K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=2+\dfrac{2a+2}{\sqrt{a}}\)

\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

Bài đầu : \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

b: \(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{a-1}\cdot\dfrac{a+1}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}+4a\sqrt{a}-4\sqrt{a}}{a-1}\cdot\dfrac{a+1}{\sqrt{a}}\)

\(=\dfrac{4a\sqrt{a}\left(a+1\right)}{\left(a-1\right)\cdot\sqrt{a}}=\dfrac{4a\left(a+1\right)}{a-1}\)

Câu 2: 

Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

Câu 1: 

Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=1\)

26 tháng 7 2021

A=\(\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(a-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(a+\sqrt{a}\right)}{\left(a-1\right)}\right]\)::::::::\(\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

=\(\left[\dfrac{1}{\sqrt{a}-1}\right]:\left(\dfrac{2\sqrt{a}}{a-1}\right)\)=\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)

=\(\dfrac{a^2+a\sqrt{a}+11a+6}{2\sqrt{a}\left(\sqrt{a}+2\right)}\)

Ta có: \(A=\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}-1}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)

\(=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

17 tháng 7 2018

\(A=\dfrac{a-\sqrt{a}-6}{4-a}-\dfrac{1}{\sqrt{a}-2}=\dfrac{a+2\sqrt{a}-3\sqrt{a}-6}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}-\dfrac{1}{\sqrt{a}-2}=\dfrac{\sqrt{a}-3}{2-\sqrt{a}}+\dfrac{1}{2-\sqrt{a}}=\dfrac{\sqrt{a}-2}{2-\sqrt{a}}=-1\) \(F=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\dfrac{1-\sqrt{a}}{1-a}.\dfrac{1-\sqrt{a}}{1-a}=\left(a+2\sqrt{a}+1\right).\dfrac{\left(1-\sqrt{a}\right)^2}{\left(\sqrt{a}+1\right)^2\left(1-\sqrt{a}\right)^2}=1\)

1 tháng 8 2017

Ta có :

Q = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

= \(\left(\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\) = \(\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\sqrt{a}+1-\sqrt{a}-2\right)=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(-1\right)\)

1 tháng 8 2017

Q= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ \Leftrightarrow\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\\ \left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\\ \Leftrightarrow\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\dfrac{\left(a-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(a-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ \Leftrightarrow\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\dfrac{a-1-a+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ \)

\(\Leftrightarrow\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{1}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{\sqrt{a}}\)

Xong rồi đó bạn!

Nếu muốn bạn có thể trục căn thức: ĐA:\(\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{a}\)

20 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a< >1\end{matrix}\right.\)

\(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{a-1}\)

\(=\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)}{\sqrt{a}}+\dfrac{3a+3\sqrt{a}-a-\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}+2a+2\sqrt{a}+2}{\sqrt{a}}=\dfrac{2\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)

b: \(P=\sqrt{a}+7\)

=>\(2\left(a+2\sqrt{a}+1\right)=a+7\sqrt{a}\)

=>\(2a+4\sqrt{a}+2-a-7\sqrt{a}=0\)

=>\(a-3\sqrt{a}+2=0\)

=>\(\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\)

=>\(\left[{}\begin{matrix}a=1\left(loại\right)\\a=4\left(nhận\right)\end{matrix}\right.\)

c: \(P-6=\dfrac{2\left(\sqrt{a}+1\right)^2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2a+4\sqrt{a}+2-6\sqrt{a}}{\sqrt{a}}=\dfrac{2a-2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\left(a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}\right)}{\sqrt{a}}=\dfrac{2\left[\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}{\sqrt{a}}>0\)

=>P>6

26 tháng 12 2021

a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

27 tháng 12 2021

\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

14 tháng 7 2017

Bài 2:

\(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(P=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(P=\left[\dfrac{\left(a-1\right)^2}{4a}\right].\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\sqrt{a}-1}{a-1}\right)\)

\(P=\dfrac{\left(a-1\right)^2}{4a}.\dfrac{2\sqrt{a}.\left(-2\right)}{a-1}\)

\(P=\dfrac{\left(a-1\right)^2\left(-4\sqrt{a}\right)}{4a.\left(a-1\right)}\)

\(P=\dfrac{\left(a-1\right).\left(-\sqrt{a}\right)}{a}=\dfrac{-a\sqrt{a}+\sqrt{a}}{a}\)

14 tháng 7 2017

Bài 1:

\(A=\dfrac{2}{\sqrt{2}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}-1}\)\(A=\dfrac{2\sqrt{2}}{2}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1}\)

\(A=\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{1}+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(A=\sqrt{2}-\sqrt{3}-\sqrt{2}+\sqrt{3}+1\)

\(A=1\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)=\left(a-1\right)^2\)