Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2=2x^3-\frac{3}{2}x^2+2\)
\(2x^2-10x-3x-2x^2=26\)
-13x=26
x=-2
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}=\frac{-5}{x\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}\)
\(=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}\)
\(=\frac{x-5-x}{x\left(x-5\right)}\)
\(=-\frac{5}{x\left(x-5\right)}\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x-3}{2x}\left(1-\frac{6}{x-3}\right)\)
\(=\frac{x-3}{2x}.\frac{x-9}{x-3}=\frac{x-9}{2x}\)
\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\left(x\ne\pm3;x\ne0\right)\)
\(\Leftrightarrow M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\left(1-\frac{6}{x-3}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\frac{x-9}{x-3}\)
\(\Leftrightarrow M=\frac{x-9}{2x}\)
Vậy với \(x\ne\pm3;x\ne0\)thì \(M=\frac{x-9}{2x}\)
Bài 1:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Bài 2:
đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)
Xét BT trái ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}\)
\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)
GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến
=> đpcm
Bài 1.
( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )
= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
Bài 2. ĐKXĐ tự ghi nhé :))
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)
=> đpcm
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=2x^3-\frac{3}{2}x^2+2\)