Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
Gọi biểu thức trên là T
+)Xét \(x-3\ge0\Leftrightarrow x\ge3\)
T trở thành:\(T=3\left(x-1\right)-2\left(x-3\right)\)
\(=\left(3x-2x\right)-\left(3-6\right)\)\(=x+3\) (1)
+)Xét \(x-3< 0\Leftrightarrow x< 3\)
Khi đó: \(T=3\left(x-1\right)-2\left[-\left(x-3\right)\right]\)
\(=3\left(x-1\right)-2\left(-x+3\right)\)
\(=\left(3x+2x\right)-\left(3+6\right)=5x-9\)(2)
Từ (1) và (2) ...
\(\left(x+3\right)^3-2\left(x+2\right)^2=\left(x+2\right)^2\left(x+3-2\right)\)\(=\left(x+2\right)^2\left(x+1\right)\)
\(\left(x+3\right)^3-2\left(x+2\right)^2\)
\(=x^3+9x^2+27x+9-2\left(x^2+4x+4\right)\)
\(=x^3+9x^2+27x+9-2x^2-8x-8\)
\(=x^3+7x^2+19x+1\)
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-3y-4xy+8y-2x^2+3y+4xy\)
\(=-2y-2xy\)
Thay x,y ta có:
\(-2y-2xy=-2\left(\frac{3}{4}\right)-2\left(\frac{-2}{3}.\frac{3}{4}\right)\)
\(-2y-2xy=\frac{-3}{2}-2.\frac{-1}{2}\)
\(-2y-2xy=\frac{-3}{2}-\left(-1\right)\)
\(-2y-2xy=\frac{-3}{2}+1=\frac{-3}{2}+\frac{2}{2}=\frac{-1}{2}\)
Vậy biểu thức trên có giá trị bằng \(\frac{-1}{2}\)
a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)
Thay \(a=\frac{1}{2};x=-3\), ta có :
\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)
b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)
\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)
Thay \(a=-3;b=-4;c=2;d=3\), ta có :
\(B=\left(-3\right).\left(-4\right).2.3=72\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
\(A=4\left(x-3\right)-3\left|x+3\right|\)
- Nếu \(x\ge-3\) . Ta có : \(A=4.\left(x-3\right)-3.\left(x+3\right)=4x-12-3x-9=x-3\)
- Nếu \(x< -3\) . Ta có :
\(A=4.\left(x-3\right)-3.\left(-x-3\right)=4x-12+3x+9=x+21\)
\(A=4x-12-3\left|x+3\right|\)
(+) Với |x+3|=x+3
Thay vào biểu thưc ta được
\(A=4x-12-3\left(x+3\right)=4x-12-3x-9=x-21\)
(+) Với |x+3| = - (x+3)
Thay vào biểu thưc ta được
\(A=4x-12-3\left(-x-3\right)=4x-12+3x+9=7x-3\)