K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\\ =x^3-x^2y^2-xy+x^2y^2-x^3\\ =\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\\ =-xy\)

25 tháng 9 2023

\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)

\(=x^3-x^2y^2-xy+x^2y^2-x^3\)

\(=\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\)

\(=-xy\)

Vậy \(A=-xy\)

#\(Toru\)

10 tháng 9 2019

Bạn viết rõ hơn nhé : 

\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)

\(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)

\(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)

\(\frac{x-y}{y}\)

Chúc bạn học tốt !!!

24 tháng 9 2024

A = (\(x-y\)).(\(x^2\) + \(xy\) + y2) + 2y3

A = \(x^3\) - y3 + 2y3

A = \(x^3\) + y3

Thay \(x=\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức

A = \(x\)3 +  y3 ta có:

A = (\(\dfrac{2}{3}\))3 + (\(\dfrac{1}{3}\))3

A = \(\dfrac{8}{27}\) + \(\dfrac{1}{27}\)

A = \(\dfrac{9}{27}\)

A = \(\dfrac{1}{3}\) 

 

 

29 tháng 11 2016

\(\frac{xy+2x-y-2}{xy-x-y+1}=\frac{\left(xy-y\right)+\left(2x-2\right)}{\left(xy-y\right)+\left(1-x\right)}\)

\(=\frac{\left(x-1\right)\left(y+2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{y+2}{y-1}\)

29 tháng 11 2016

\(\frac{\left(xy-y\right)+\left(2x-2\right)}{\left(xy-y\right)-\left(x-1\right)}=\frac{y\left(x-1\right)+2\left(x-1\right)}{y\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-1\right)\left(y+2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{y+2}{y-1}\)

Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

28 tháng 2 2018

A = x-y/x.(x+y) - 3x+y/x.(x-y) . (y-x)/x+y

   = x-y/x.(x+y) + 3x+y/x.(x+y)

   = x-y+3x+y/x.(x+y)

   = 4x/x.(x+y)

    = 4/x+y

Tk mk nha

28 tháng 2 2018

\(A=\frac{x-y}{xy+y^2}-\frac{3x+y}{x^2-xy}.\frac{y-x}{x+y}\)

    \(=\frac{x-y}{y\left(x+y\right)}-\frac{3x+y}{x\left(x-y\right)}.\frac{-\left(x-y\right)}{x+y}\)

     \(=\frac{x-y}{y\left(x+y\right)}-\frac{-\left(3x+y\right).\left(x-y\right)}{x\left(x-y\right).\left(x-y\right)}\)

      \(=\frac{x-y}{y\left(x+y\right)}-\frac{-\left(3x+y\right)}{x\left(x-y\right)}\)

       \(=\frac{x\left(x-y\right)^2}{xy\left(x+y\right)\left(x-y\right)}+\frac{y\left(3x+y\right)\left(x+y\right)}{xy\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(x^2-2xy+y^2\right)+y\left(3x^2+4xy+y^2\right)}{xy\left(x^2-y^2\right)}\)

  \(=\frac{x^4-2x^2y+xy^2+3x^2y+4xy^2+y^3}{xy\left(x^2-y^2\right)}\)

\(=\frac{x^4+x^2y+5xy^2+y^3}{xy\left(x^2-y^2\right)}=\frac{x^2\left(x^2+y\right)+y^2\left(5x+y\right)}{xy\left(x^2-y^2\right)}\)

30 tháng 9 2017

a) Thực hiện phép nhân và hằng đẳng thức thu được

A =  x 3  – 2 x 2  – ( x 3 – 1 3 ); rút gọn A = 1 – 2 x 2 .

b) Đặt (xy – 1) làm nhân tử chung ta được B = 3(1 – xy).

15 tháng 11 2021

\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)