Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)
\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)
b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\sqrt{x}\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
Ta có:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)
= \(\dfrac{-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-1\)
Kết luận: ...
ĐK của nó còn là: x ≥ 0 nữa dung doan nhé, mình viết thiếu...
1)
a)
\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)
\(A=3-\sqrt{2}+3+\sqrt{2}=6\)
b)
\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)
\(B=\sqrt{44}=2\sqrt{11}\)
nhan ca tu va mau voi\(\sqrt{2}\) ta dc
\(\frac{\sqrt{2x-4\sqrt{2x-4}}}{2}=\frac{\sqrt{2x-4-4\sqrt{2x-4}}}{2}=\frac{\sqrt{\left(\sqrt{2x-4}-2\right)^2}}{2}\)(dkx>=2)
=\(\frac{\left|\sqrt{2x-4}-2\right|}{2}\)
đk: x>=0; x khác 3
a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)
A2=x+\(\sqrt{2x-1}\)+x-\(\sqrt{2x-1}\)- 2\(\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}\)
A2=2x-2\(\sqrt{x^2-2x+1}\)
A2=2x-2(x-1)=1
=>A=1(vì a>0)
Ta có: \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\) \(\left(ĐK:x\ge\frac{1}{2}\right)\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1\)
\(\Leftrightarrow A\sqrt{2}=2\)
\(\Leftrightarrow A=\sqrt{2}\)