\(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2018

A = \(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right).\left(x+1\right)}-\frac{x+3}{2\left(x+2\right)}\right).\frac{4x^2-4}{5}\)

A = \(\left(\frac{\left(x+1\right)^2+3.2-\left(x+3\right).\left(x-1\right)}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4x^2-4}{5}\)

A = \(\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)

A = \(\frac{10}{2\left(x-1\right).\left(x+1\right)}.\frac{4\left(x-1\right).\left(x+1\right)}{5}\)

A = 4

b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

16 tháng 8 2019

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)

Vậy pt có vô số nghiệm

\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)

Mấy câu rút gọn bạn quy đồng nha

16 tháng 8 2019

bạn có thể giải ra giúp mik đc ko?

30 tháng 6 2017

a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)

\(=\frac{4x}{\left(x+1\right)^2}\)=VP

b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)

=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)

=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP

c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)

\(=x+y=\)VP

Vậy các đẳng thức được chứng minh

=

30 tháng 6 2017

C là xy mà ko phải x+y

4 tháng 1 2019

a) ĐKXĐ: \(x\ne\pm1\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{1-x}{\left(1+x\right)\left(1-x\right)}-\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}+\frac{x}{x^2-1}\right)\)

\(=\frac{4x-1}{x^2-1}:\left(\frac{-x^2-2x+1}{1-x^2}-\frac{x}{1-x^2}\right)=\frac{4x-1}{x^2-1}:\frac{-x^2-3x+1}{1-x^2}\)

\(=\frac{1-4x}{1-x^2}:\frac{-x^2-3x+1}{1-x^2}=\frac{\left(1-4x\right)\left(1-x^2\right)}{\left(1-x^2\right)\left(-x^2-3x+1\right)}\)

\(=\frac{1-4x}{-x^2-3x+1}=\frac{4x-1}{x^2+3x-1}\) (chắc hết rút gọn được rồi)

4 tháng 1 2019

Ơ sao câu trả lời của mình có khung màu vàng nhỉ?