K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{1+x+1-x}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)

\(=\frac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{32}{1-x^{32}}\)

6 tháng 8 2015

A = \(\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+...+\frac{16}{1+x^{16}}=\frac{2}{1-x^2}+\frac{2}{1+x^2}+..+\frac{16}{1+x^{16}}\)

   \(=\frac{2+2x^2+2-x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+..+\frac{16}{1+x^{16}}=\frac{4}{1-x^{^4}}+...+\frac{16}{1+x^{16}}\)

Tưng tự 

\(\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\frac{32}{1-x^{32}}\)

27 tháng 11 2018

\(A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{2\left(x^2+1\right)+2.\left(x^2-1\right)}{\left(x^2+1\right)\left(1-x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{2\left(x^2+1\right)+2.\left(1-x^2\right)}{\left(x^2+1\right)\left(1-x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{4\left(1+x^4\right)+4.\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(A=\frac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(A=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)

\(A=\frac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(x+x^{16}\right)}\)

\(A=\frac{32}{1-x^{32}}\)

3 tháng 7 2015

\(P=\frac{1}{1-x}+\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)

\(P=\frac{x+1+1-x}{1-x^2}+\frac{2}{x^2+1}+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)

\(P=\left(\frac{2}{1-x^2}+\frac{2}{x^2+1}\right)+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)

\(P=\left(\frac{4}{1-x^4}+\frac{4}{x^4+1}\right)+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)

\(P=\frac{8}{1-x^8}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}=\frac{8x^8+8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{x^{16}+1}\)

\(P=\frac{16}{1-x^{16}}+\frac{16}{x^{16}+1}=\frac{32}{\left(1-x^{16}\right)\left(1+x^{16}\right)}=\frac{32}{1-x^{32}}\)

7 tháng 12 2017

toán lớp mấy?

27 tháng 11 2016

\(A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{32}{1-x^{32}}\)

23 tháng 7 2017

a, \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)

\(=\frac{x^8+x^4+1}{x^4+x^2+1}\) Vậy phân thức \(a=\frac{x^8+x^4+1}{x^4+x^2+1}\)

P/s; Căn thức a, là phân số tối giản 

b, \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)

\(=\frac{x^4+3x^2+2}{x^2+x^1+1}\) Vậy căn thức \(b=\frac{x^4+3x^2+2}{x^2+x^1+1}\)

P/s; Căn thức b, có thể rút gọn được cho 2 và 4

Em ko chắc đâu nhé *-*

27 tháng 6 2018

\(a,\)

\(A=\left(\frac{4x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{4x^2-4x+16}{x^2-4}\right):\frac{16}{x+2}.\frac{x^2+3x+2}{x^2+x+1}\)\(ĐKXĐ:x\ne\pm2\)

\(A=[\frac{4x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right).4\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x+2\right)}]:\frac{16}{x+2}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=[\frac{4x}{x+2}-\frac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}].\frac{x+2}{16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}.\frac{x+2}{16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{16\left(x+2\right)}{\left(x+2\right)^2.16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{-\left(x+1\right)}{x^2+x+1}\)

\(B=\frac{x^2+x-2}{x^3-1}\)\(ĐKXĐ:x\ne1\)

\(B=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(B=\frac{x+2}{x^2+x+1}\)

\(b,\)

Ta có:

\(A+B=\frac{-\left(x+1\right)}{x^2+x+1}+\frac{x+2}{x^2+x+1}\)

\(=\frac{-x-1+x+2}{x^2+x+1}\)

\(=\frac{1}{x^2+x+1}\)

\(\Rightarrow A+B=\frac{1}{x^2+x+1}=\frac{1}{x^2+2.x.\left(\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{1}{\left(x+\frac{1}{2}\right)^2}+\frac{3}{4}\)

Vì:\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}\)

\(\Rightarrow A+B\le\frac{4}{3}\)

\(\Rightarrow GTLN\)của \(A+B=\frac{4}{3}\Leftrightarrow x+\frac{1}{2}=0\)

                                                        \(\Leftrightarrow x=\frac{-1}{2}\left(TMĐK\right)\)

Vậy........