\(\tan^2\left(x\right)-\sin^2\left(x\right)=\tan^2\left(x\right)\sin^2\left(x\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

tích mình với

ai tích mình

mình tích lại

thanks

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html

21 tháng 9 2016

A = (tan + cot) - (tan - cot)2 = 2tan×2cot = 4

B = sin6 + cos6 + 3sin2 + cos2 

= (sin2 + cos2)(sin4 - si​n2 cos2 + cos4) 3sin2 + cos2 

= (sin2 + cos2)2 - 3sincos2 + 3sin2 + cos2 

= 3sin2 (1 - cos2) + 1 + cos2

= 3sin4 + 1 + cos2

21 tháng 9 2016

Có thể câu B bạn chép sai đề. Đề đúng là

B = sin6 + cos6 + 3sin2 cos2 

= (sin2 + cos2)(sin4 - si​n2 cos2 + cos4) 3sin2 cos2 

= (sin2 + cos2)2​ - 3sincos2 + 3sin2 cos2 = 1

9 tháng 7 2016

(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)

=(cos 89 độ +... + cos 2 độ +cos 1 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)

=0

4 tháng 10 2018

a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)

b) \(tan^2x+cot^2x+2\)

\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)

\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)

\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)

\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)

c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)

\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)

\(=1+sin^2x.cos^2x\)

Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^

2 tháng 8 2018

a+b+c : dựa vào cái hệ thức \(\sin^2\alpha+\cos^2\alpha=1\)

a) Ta có :  \(\left(\sin x+\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x\)

\(=1+2.\sin x.\cos x\left(đpcm\right)\)

b) Ta có :  \(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x+\sin^2x-2.\sin x.\cos x+\cos^2x\)

\(=\sin^2x+\cos^2x+\sin^2x+\cos^2x\)

\(=2\left(\sin^2x+\cos^2x\right)\)

\(=2\times1=2\left(đpcm\right)\)

c) Ta có :  \(\sin^4x+\cos^4x\)

\(=\left(\sin^2x\right)^2+\left(\cos^2x\right)^2\)

\(=\left(\sin^2x+\cos^2x\right)^2-2.\sin^2x.\cos^2x\)

\(=1-2.\sin^2x.\cos^2x\left(đpcm\right)\)

Vậy ...

12 tháng 10 2018

a) ta có : \(sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)=sin\alpha.cos\alpha\left(\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}\right)\)

\(=sin^2\alpha+cos^2\alpha=1\)

b) ta có : \(\left(sin^2\alpha+cos^2\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)

\(=1^2+1-2sin\alpha.cos=2\left(1-2sin\alpha.cos\alpha\right)\)

c) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)

\(=\dfrac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)

8 tháng 8 2018

\(A=sin^210+sin^220+sin^230+sin^280+sin^270+sin^260=sin^210+sin^220+sin^230+cos^210+cos^220+cos^230=1+1+1=3\)\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)+\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)=\dfrac{1}{cos^2\alpha}.cos^2\alpha+\dfrac{1}{sin^2\alpha}.sin^2\alpha=1+1=2\)