\(\dfrac{1}{2x^2+3x-5}\) và \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(\frac{x+2}{4x-x^2-3}=\frac{-\left(x+2\right)}{x^2-4x+3}=\frac{\left(-x-2\right)\left(2x+5\right)}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}=\frac{-2x^2-9x-10}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)

\(\frac{1}{2x^2+3x-5}=\frac{1}{\left(x-1\right)\left(2x+5\right)}=\frac{x-3}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)

21 tháng 11 2022

\(\dfrac{1}{2x^2+3x-5}=\dfrac{1}{\left(2x+5\right)\left(x-1\right)}=\dfrac{x-3}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)

\(\dfrac{x+2}{4x-x^2-3}=\dfrac{-\left(x+2\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{-\left(x+2\right)\left(2x+5\right)}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)

20 tháng 11 2018

\(\frac{-3}{x^2+6x+8}=\frac{-3}{x\left(x+2\right)+4\left(x+2\right)}=\frac{-3}{\left(x+2\right)\left(x+4\right)}=\frac{-3x+12}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)

\(\frac{5}{x^2-16}=\frac{5}{\left(x-4\right)\left(x+4\right)}=\frac{5x+10}{\left(x+2\right)\left(x-4\right)\left(x+4\right)}\)

\(\frac{1}{x^2-2x-8}=\frac{1}{x\left(x-4\right)+2\left(x-4\right)}=\frac{1}{\left(x-4\right)\left(x+2\right)}=\frac{x+4}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)

21 tháng 11 2018

Ta có \(\frac{2}{x^3-y^3}=\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{2x-1}{x^2-y^2}=\frac{2x+1}{\left(x+y\right)\left(x-y\right)}\)

\(\frac{1}{x+y}\)  giữ nguyên

MTC: \(\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

Các nhân tử phụ tương ứng là : \(\left(x+y\right);\left(x-y\right)\left(x^2+xy+y^2\right);\left(x^2+xy+y^2\right)\)

Ta có:

\(\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2.\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{1}{x+y}=\frac{1.\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{2x+1}{\left(x+y\right)\left(x-y\right)}=\frac{\left(2x+1\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

20 tháng 11 2018

\(\frac{4}{x^2-9}=\frac{4}{\left(x-3\right)\left(x+3\right)}=\frac{4x}{x\left(x-3\right)\left(x+3\right)}\)

\(\frac{1-x}{3x-x^2}=\frac{x-1}{x^2-3x}=\frac{\left(x-1\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)

14 tháng 11 2017

a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)

Nên MTC = (x – 1)(x2 + x + 1)

Nhân tử phụ:

(x3 – 1) : (x3 – 1) = 1

(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1

(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

b) Tìm MTC: x + 2

2x – 4 = 2(x – 2)

6 – 3x = 3(2 – x)

MTC = 6(x – 2)(x + 2)

Nhân tử phụ:

6(x – 2)(x + 2) : (x + 2) = 6(x – 2)

6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)

6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

click mh nha
17 tháng 11 2017

Bạn giỏi quá !!!

24 tháng 7 2017

a) \(\dfrac{3x}{2x+4}\)\(\dfrac{x+3}{x^2-4}\)

Phân tích các mẫu thức thành nhân tử :

\(2x+4 = 2(x+2)\)

\(x^2 - 4 = (x-2)(x+2)\)

MTC : \(2(x+2)(x-2)\)

Nhân tử phụ của mẫu thức : \(2x + 4\)\((x - 2)\)

\(x^2 - 4\)\(2\)

QĐ: \(\dfrac{3x}{2x+4}=\dfrac{3x}{2\left(x+2\right)}=\dfrac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x+3}{x^2-4}=\dfrac{x+3}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

b) \(\dfrac{x+5}{x^2+4x+4}\)\(\dfrac{x}{3x+6}\)

Phân tích các mẫu thức thành nhân tử :

\(x^2+4x+4 = (x+2)^2\)

\(3x + 6\) \(= 3(x+2)\)

MTC : \(3(x+2)^2\)

Nhân tử phụ của mẫu thức : \(x^2 + 4x +4 \)\(3\)

\(3x + 6\)\((x+2)\)

QĐ : \(\dfrac{x+5}{x^2+4x+4}=\dfrac{\left(x+5\right)}{\left(x+2\right)^2}=\dfrac{3\left(x+5\right)}{3\left(x+2\right)^2}\)

\(\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\)