\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)

    =\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)

26 tháng 2 2020

a, M=\(\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)(ĐKXD: x>0, x#4, x#9)

=\(\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)^{ }}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

Vậy.....

b, ta có x=11-6\(\sqrt{2}\)=\(\left(3-\sqrt{2}\right)^2\)

Thay vào M ta đươc:

M=\(\frac{\sqrt{\left(3-\sqrt{2}\right)^2}+1}{\sqrt{\left(3-\sqrt{2}\right)^2}-3}\)=\(\frac{3-\sqrt{2}+1}{3-\sqrt{2}-3}=\frac{4-\sqrt{2}}{-\sqrt{2}}=1-2\sqrt{2}\)

c,Để M<1<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)<1 <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)-1<0<=> \(\frac{4}{\sqrt{x}-3}\)<0<=> x<9(t/m x#9) mà x>0, x#4 => 0<x<9 và x#4

Vậy....

d, Để M∈Z <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)∈Z<=>\(1+\frac{4}{\sqrt{x}-3}\)∈Z<=>\(\frac{4}{\sqrt{x}-3}\)∈Z<=> 4⋮\(\sqrt{x}-3\)<=>\(\sqrt{x}-3\)∈Ư(4)={\(\pm\)1,\(\pm\)2,\(\pm\)4}

<=>\(\sqrt{x}\) ∈ {2,4,5,1,7}

<=>x ∈ {4,16,25,1,49} mà x#4

=> x∈ {16,25,1,49}

vậy..

7 tháng 7 2017

a. P=\(\frac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\cdot\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}.\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)

b. P=\(\frac{5}{\sqrt{x}+3}\)

P nguyên \(\Leftrightarrow\sqrt{x}+3\inƯ\left(5\right)\Rightarrow\sqrt{x}+3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2\right\}\)\(\Rightarrow x=4\)

Vậy x=4 thì P nguyên  

4 tháng 7 2018

con ma

7 tháng 8 2017

1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)

\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)

\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)

\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)

\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(N=\frac{4x}{x-3}\)

Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)

2.Với \(x>0,x\ne4,x\ne9\)

Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)

Vậy ..........

3. Với \(x>0,x\ne4,x\ne9\)

Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)

Vậy ...............