K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

ta có:

x(x + 1)(x + 2)(x + 3) + 1 
x(x + 3)[(x + 1)(x + 2)] + 1  
(x² + 3x)(x² + 3x + 2) + 1 
(x² + 3x)(x² + 3x) + 2(x² + 3x) + 1 
(x² + 3x + 1)² = 0 
 

12 tháng 2 2017

Ta có:     x(x+3).(x+1)(x+2) + 1  =  (x^2 + 3x)(x^2 + 3x + 2)  + 1 (*)

   Đặt x^2 + 3x =t khi đó (*) trở thành:  

                           t(t+2) + 1 = t^2 + 2t + 1

                                           = (t+1)^2    (1)

   Thay t=x^2+3x vào(1)=>  (x^2 + 3x + 1) 

 Đây là cách giải thường được AD cho những dạng toán như thế này.Nhưng bài này cũng có thể giải như bạn đã trả lời câu hỏi này trước mình

a: \(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18\)

\(=\left[\left(2x+2\right)^2-1\right]\left(x+1\right)^2-18\)

\(=4\left(x+1\right)^4-\left(x+1\right)^2-18\)

\(=4\left(x+1\right)^4-9\left(x+1\right)^2+8\left(x+1\right)^2-18\)

\(=\left(x+1\right)^2\left[4\left(x+1\right)^2-9\right]+2\left[4\left(x+1\right)^2-9\right]\)

\(=\left[\left(2x+2\right)^2-9\right]\left[\left(x+1\right)^2+2\right]\)

\(=\left(2x+5\right)\left(2x-1\right)\left(x^2+2x+3\right)\)

b: \(\left(x^2+4x+3\right)\left(x^2+12x+35\right)+15\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

c: \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)

\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)

\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+143x^2-24x^2\)

\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+119x^2\)

\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)

\(=\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)\)

13 tháng 12 2017

a)  x2 - x - 12 

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

b) x3 - y3 - 3x2 + 3x - 1

= (x3 - 3x2 + 3x - 1) - y3

= (x - 1)3 - y3

= (x - 1 - y) [ (x - 1)2 + (x - 1)y + y2 ]

= (x - y - 1)(x2 - 2x + 1 + xy - y + y2 )

d) 4x3 - 5x2 - 16x + 20

= (4x3 - 8x2) + (3x2 - 6x) - (10x - 20)

= 4x2 (x - 2) + 3x(x - 2) - 10(x - 2)

= (x - 2)(4x2 + 3x - 10)

= (x - 2)(4x2 + 8x - 5x - 10)

= (x - 2)(x + 2)(4x - 5)

3 tháng 10 2017

Phân tích đa thức thành nhân tử:

a \(x^{16}-1\)

\(=\left(x^8\right)^2-1^2\)

\(=\left(x^8-1\right)\left(x^8+1\right)\)

b, \(x^{36}-64\)

\(=\left(x^{18}\right)^2-8^2\)

\(=\left(x^{18}-8\right)\left(x^{18}+8\right)\)

\(=\left[\left(x^6\right)^3-2^3\right]\left[\left(x^6\right)^3+2^3\right]\)

\(=\left(x-2\right)\left(x^{12}+2x+4\right)\left(x+2\right)\left(x^{12}-2x+4\right)\)

c, \(x^6+y^6\)

\(=\left(x^2\right)^3+\left(y^2\right)^3\)

\(=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)