Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(6x^4+7x^3-37x^2-8x+12\)
\(=\left(6a^4+6a^3-36a^2\right)+\left(a^3+a^2-6a\right)+\left(-2a^2-2a+12\right)\)
\(=6a^2\left(a^2+a-6\right)+a\left(a^2+a-6\right)-2\left(a^2+a-6\right)\)
\(=\left(a^2+a-6\right)\left(6a^2+a-2\right)\)
Em làm tiếp nhé
b) Hướng dẫn:
=\(\left(x^2+4x+8\right)^2-\left(2x\right)^2+\left(2x\right)^2+3x^3+14x^2+24x\)
\(=\left(x^2+2x+8\right)\left(x^2+6x+8\right)+\left(3x^3+18x^2+24x\right)\)
\(=\left(x^2+6x+8\right)\left(x^2+2x+8+3x\right)\)
Em làm nhé!
- Đa thức x2 - x + 1 ko phân tích được thành nhân tử vì nếu phân tích được thì phải có nghiệm ; mà :
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) > 0 với mọi x nên vô nghiệm.
a) 2xy + 3z + 6y + xz
= (2xy + 6y) + (xz + 3z)
= 2y(x + 3) + z(x + 3)
= (2y + z)(x + 3)
b) 9x - x3
= x(9 - x2)
= x(3 + x)(3 - x)
c) xz + yz + 5.(x + y)
= (xz + yz) + 5(x + y)
= z(x + y) + 5(x + y)
= (z + 5)(x + y)
d) x2 + 4x - y2 + 4
= (x2 + 4x + 4) - y2
= (x + 2)2 - y2
= (x + 2 + y)(x + 2 - y)
có j til mik nha
a) 2xy + 3z + 6y + xz
* Gợi ý : Câu này ta dùng phương pháp nhóm hạng tử và đặt thừ số chung.
Giải :
\(=\left(2xy+6y\right)+\left(3z+xz\right)\)
\(=2y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(2y+z\right)\left(x+3\right)\)
b) 9x - x3
* Gợi ý : Câu này ta dùng phương pháp đặt thừ số chung và dùng hằng đẳng thức.
\(=9.x-x^2.x\)
\(=x\left(9-x^2\right)\)
\(=x\left[\left(3\right)^2-x^2\right]\)
\(=x.\left(3+x\right)\left(3-x\right)\)
a, \(x^6-x^4-9x^3+9x^2\)
= \(x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
=\(x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^4\left(x+1\right)-9x^2\right)\)
= \(\left(x-1\right)\left(x^5+x-9x^2\right)\)
b, \(x^4-4x^3+8x^2-16x+16\)
= \(x^4-4x^3+4x^2+4x^2-16x+16\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
c, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)
= \(\left(xy+4\right)^2-\left(2\left(x+y\right)\right)^2\)
= \(\left(xy-2x-2y+4\right)\left(xy+2x+2y+4\right)\)
= \(\left(x\left(y-2\right)-2\left(y-2\right)\right)\left(x\left(y+2\right)+2\left(y+2\right)\right)\)
=\(\left(x-2\right)\left(y-2\right)\left(x+2\right)\left(y+2\right)\)
d, \(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)
= \(a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2ac-2bc-4b^2\)
=\(2a^2+2b^2+2c^2+4ac-4b^2\)
a) \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=\left(9x-1\right)^2+2\left(9x-1\right)\left(1-5x\right)+\left(1-5x\right)^2\)
\(=\left(9x-1+1-5x\right)^2=\left(4x\right)^2\)
b) \(x^2\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^4-16x^2-x^4+1=-16x^2+1\)
\(6x^2-7x-20\)
\(=6x^2-15x+8x-20\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
6x2-7x-20
=6x2-15x+8x-20
=6x2+8x-15x-20
=3x(2x-5)-4(2x-5)
=(2x-5)(3x-4)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
Phân tích đa thức thành nhân tử:
\(x^4-9x^2=x^2\left(x^2-9\right)\)
_Học tốt_
y b) \(x^2-5x+9\)