Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
Ta có A=\(\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{z}}+\frac{z^2}{z\sqrt{x}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y}+y\sqrt{z}+z\sqrt{x}}\)
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le\sqrt{\left(x+y+z\right)\left(xy+yz+zx\right)}\le\sqrt{\frac{1}{3}\left(x+y+z\right)^2\left(x+y+z\right)}\)
\(\Rightarrow A\ge\sqrt{\frac{x+y+z}{\frac{1}{3}}}=\sqrt{3\left(x+y+z\right)}\ge\sqrt{9}=3\)
=> A>=3 (ĐPCM)
Dấu = xảy ra <=> x=y=z=1
^^
a)\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+2\frac{\sqrt{6}}{3}-4\frac{\sqrt{6}}{2}\)
\(=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-\frac{4}{2}\right)=\sqrt{6}.\frac{1}{6}\)
b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=\left(x.\frac{\sqrt{6x}}{x}+\frac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)
\(=1+\frac{1}{3}+1=2\frac{1}{3}\)
a/ Đk: x\(\ge\)0
Khi đó ta có:
P =\(\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{2-3\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
=\(\frac{15\sqrt{x}-11+\left(2-3\sqrt{x}\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\frac{\left(-5x+5\sqrt{x}\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\frac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\frac{5\sqrt{x}-2}{\sqrt{x}+3}\)
b/ Với x\(\ge\)0
Để P=\(\frac{1}{2}\)\(\Leftrightarrow\)\(\frac{5\sqrt{x}-2}{\sqrt{x}+3}=\frac{1}{2}\)\(\Rightarrow\)\(\frac{2\left(5\sqrt{x}-2\right)-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}=0\)
\(\Rightarrow\)\(10\sqrt{x}-4-\sqrt{x}-3=0\)
\(\Rightarrow\)\(9\sqrt{x}=7\)
\(\Rightarrow\)\(\sqrt{x}=\frac{7}{9}\)
\(\Rightarrow\)\(x=\frac{49}{81}\) (thỏa mãn đk)
Vậy .....
a/ p=\(\frac{5\sqrt{x}-2}{\sqrt{x}+3}\)
b/ x=\(\frac{49}{81}\)
điều kiện \(x\ge0;P\ge0\)
Để chứng minh \(p>\sqrt{P}\)luôn đúng ta cần chứng minh P>1 luôn đúng.
Giả sử P>1 \(\Leftrightarrow\)\(\frac{x+16}{\sqrt{x}+3}>1\)\(\Leftrightarrow\)\(x+16>\sqrt{x}+3\)\(\Leftrightarrow\)\(x-\sqrt{x}+13>0\)
\(\Leftrightarrow\)\(x+\sqrt{x}+\frac{1}{4}+12,75>0\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\frac{1}{2}\right)^2+12,75>0\)luôn luôn đúng
như vậy P luôn luôn >1 là đúng\(\Leftrightarrow\)\(p>\sqrt{P}\)luôn đúng (đpcm)