Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
1:
a: Khi m=1 thì (1) sẽ là x^2+2x-5=0
=>\(x=-1\pm\sqrt{6}\)
b: Δ=(2m)^2-4(-2m-3)
=4m^2+8m+12
=4m^2+8m+4+8=(2m+2)^2+8>=8>0
=>Phương trình luôn có hai nghiệm phân biệt
2:
Thay x=-1 và y=2 vào (P), ta được:
a*(-1)^2=2
=>a=2
Lời giải:
Để pt có 2 nghiệm pb thì $\Delta'=1-(m-1)>0\Leftrightarrow m< 2$
Áp dụng hệ thức Viet:
$x_1+x_2=2$
$x_1x_2=m-1$
Khi đó:
$x_1^2+x_2^2-3x_1x_2=2m^2+|m-3|$
$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=2m^2+|m-3|$
$\Leftrightarrow 2^2-5(m-1)=2m^2+|m-3|$
$\Leftrightarrow 2m^2+5m+|m-3|-9=0$
$\Leftrightarrow 2m^2+5m+3-m-9=0$ (do $m< 2 < 3$)
$\Leftrightarrow 2m^2+4m-6=0$
$\Leftrightarrow m^2+2m-3=0$
$\Leftrightarrow (m-1)(m+3)=0$
$\Rightarrow m=1$ hoặc $m=-3$ (đều tm)
\(d,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\\ \Leftrightarrow x-1=2+x+1+4\sqrt{x+1}\\ \Leftrightarrow4\sqrt{x+1}=-4\Leftrightarrow x\in\varnothing\left(4\sqrt{x+1}\ge0\right)\\ g,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2\\ \Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{2-2x}{2}=1-x\\ \Leftrightarrow\left|x-1\right|=1-x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=1-x\left(x\ge1\right)\\x-1=x-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x\in R\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ge2\)
\(\dfrac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}+\dfrac{\sqrt{x-1}-\sqrt{x-2}}{\left(\sqrt{x-1}+\sqrt{x-2}\right)\left(\sqrt{x-1}-\sqrt{x-2}\right)}=1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-\sqrt{x-1}}{1}+\dfrac{\sqrt{x-1}-\sqrt{x-2}}{1}=1\)
\(\Leftrightarrow\sqrt{x}-\sqrt{x-2}=1\)
\(\Leftrightarrow\sqrt{x}=1+\sqrt{x-2}\)
\(\Leftrightarrow x=1+x-2+2\sqrt{x-2}\)
\(\Leftrightarrow2\sqrt{x-2}=1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{9}{4}\)
b
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\dfrac{x-1}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\dfrac{x-1}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|=\dfrac{x-1}{2}\)
Đặt \(\sqrt{x-1}=t\ge0\Rightarrow\left|t-1\right|+\left|t+1\right|=\dfrac{t^2}{2}\)
TH1: \(0\le t\le1\) pt trở thành:
\(1-t+t+1=\dfrac{t^2}{2}\Rightarrow t^2=4\)
\(\Rightarrow\left[{}\begin{matrix}t=2>1\left(ktm\right)\\t=-2< 0\left(ktm\right)\end{matrix}\right.\)
TH2: \(t>1\) pt trở thành:
\(t-1+t+1=\dfrac{t^2}{2}\Rightarrow t^2=2t\Rightarrow\left[{}\begin{matrix}t=0< 1\left(ktm\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=2\Rightarrow x=5\)