K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 10 2021

\(\left(cotx\right)^{ln\left(1+x^2\right)}=\left(tanx\right)^{-ln\left(1+x^2\right)}=e^{ln\left[\left(tanx\right)^{-ln\left(1+x^2\right)}\right]}\)

\(=e^{-ln\left(tanx\right).ln\left(1+x^2\right)}\sim e^{-ln\left(x\right).x^2}=e^{-\dfrac{lnx}{x^{-2}}}\)

L'Hopital (bạn tự hiểu là giới hạn khi x->0): \(e^{-\dfrac{1}{-2x.x^{-3}}}=e^{\dfrac{x^2}{2}}=e^0=1\)

1 tháng 3 2017

\(\sqrt[n]{y}=4x+1\)

\(y^{\dfrac{1}{n}}=4x+1\)

đạo cấp 1

\(\dfrac{1}{n}y^{\left(\dfrac{1}{n}-1\right)}=\dfrac{1}{n}\sqrt[n]{y^{\left(1-n\right)}}=4\)

thay y=(4x+1)^n vào

\(\dfrac{1}{n}\sqrt[n]{\left(4x+1\right)^{n\left(1-n\right)}}=\dfrac{1}{n}\left(4x+1\right)^{\left(1-n\right)}\)

từ đó: \(y'=\dfrac{4}{\dfrac{1}{n}\left(4x+1\right)^{\left(1-n\right)}}=4.n\left(4x+1\right)^{n-1}\)

Có đúng không: cấp n có thể phải làm lấy vài cái--> quy luật nào đó

NV
9 tháng 11 2021

Đáy là bát giác đều (8 cạnh) nên chóp có 8 mặt bên

Cộng thêm mặt đáy nữa nên ta sẽ có tổng cộng 9 mặt

3 tháng 5 2022

\(y=tan\left(\sqrt{x^2+4}\right)\Rightarrow y'=\dfrac{1}{cos^2\left(\sqrt{x^2+4}\right)}.\left(\sqrt{x^2+4}\right)'\)

\(\left(\sqrt{x^2+4}\right)'=\dfrac{1}{2\sqrt{x^2+4}}\left(x^2+4\right)'=\dfrac{2x}{2\sqrt{x^2+4}}=\dfrac{x}{\sqrt{x^2+4}}\)

Suy ra : \(y'=\dfrac{x}{cos^2\left(\sqrt{x^2+4}\right).\sqrt{x^2+4}}\)

20 tháng 9 2021

3.

\(y=\dfrac{1-sin^24x}{5}=\dfrac{cos^24x}{5}\)

\(cos4x\in\left[-1;1\right]\Rightarrow cos^24x\in\left[0;1\right]\Rightarrow y\in\left[0;\dfrac{1}{5}\right]\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=\dfrac{1}{5}\end{matrix}\right.\)

20 tháng 9 2021

6.

\(y=sinx+cosx+2=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\)

\(sin\left(x+\dfrac{\pi}{4}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\in\left[-\sqrt{2}+2;\sqrt{2}+2\right]\)

\(\Rightarrow y_{min}=-\sqrt{2}+2\)

\(y_{max}=\sqrt{2}+2\)

14 tháng 12 2021

Câu d có thể liệt kê ra, hoặc làm như sau:

Dễ dàng nhận ra với lần đầu tiên tung ra mặt có số chấm là 1,2,5,6 thì chỉ có 1 khả năng để 2 lần cách nhau 2 chấm là 3,4,3,4

Còn với các chấm 3 và 4 xuất hiện ở lần đầu thì có 2 khả năng tung lần 2 để 2 lần gieo cách nhau 2 chấm

Như vậy n(C) = 4.1 + 2.2 = 8

18 tháng 2 2022

\(\lim\limits_{x\rightarrow3}\left(\dfrac{1}{x}-\dfrac{1}{3}\right)\dfrac{1}{\left(x-3\right)^3}=\lim\limits_{x\rightarrow3}\dfrac{1}{3x\left(x-3\right)^2}=+\infty\)

18 tháng 2 2022

\(\lim\limits_{x\rightarrow1}\dfrac{x^3-\sqrt{3x+2}}{x-1}=\dfrac{1^3-\sqrt{3.1+2}}{1-1}=-\infty\)

3 tháng 10 2021

2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0

26 tháng 8 2016

\(x\in\left(-\infty;\infty\right)\)