K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

ĐK: x >0

Liên hợp:

pt <=> \(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

<=> \(\frac{\frac{x^2+3}{x}-4}{\sqrt{\frac{x^2+3}{x}}+2}=\frac{x^2+7-4\left(x+1\right)}{2\left(x+1\right)}\)

<=> \(\frac{x^2-4x+3}{x\left(\sqrt{\frac{x^2+3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{\frac{x^2+3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)

(1) <=> x = 1 hoặc x = 3 (tm)

(2) <=> \(x\sqrt{\frac{x^2+3}{x}}=2\)

<=> \(x\left(x^2+3\right)=4\)

<=> \(x^3+3x-4=0\)

,<=> (x-1)(x^2 +x  +4) = 0

<=> x = 1 (tm)

Vậy x = 1 hoặc x = 3.

7 tháng 12 2019

cách khác nhung chỉ dài thêm thôi

\(DK:x>0\)

PT\(\Leftrightarrow2\left(x+1\right)\sqrt{x^2+3}=\sqrt{x}\left(x^2+7\right)\)

Dat \(\sqrt{x^2+3}=t>0\)

PT tro thanh 

\(\sqrt{x}t^2-2\left(x+1\right)t+4\sqrt{x}=0\)

Ta co:

\(\Delta^`_t=\left(x-2\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}t_1=\frac{x+1+\left|x-2\right|}{\sqrt{x}}\\t_2=\frac{x+1-\left|x-2\right|}{\sqrt{x}}\\t_3=\frac{x+1}{\sqrt{x}}\end{cases}}\)

Sau do the vo giai nhu binh thuong :D

6 tháng 2 2020

\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)

  • Với \(a=2\Rightarrow x=5\)
  • Với \(a=b\Rightarrow x=2\)
7 tháng 2 2020

cái thứ 1 nhân liên hợp đi 

sau đó nhân chéo lên vs vế phải

rồi rút gọn

bình lên

giải pt là đc

20 tháng 4 2022

Dạ em cám ơn thầy giáo đã nhiệt tình giúp đỡ ạ!

NV
6 tháng 4 2022

Đặt \(a=p^q+7q^p\)

Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)

Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ

\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ

TH1: \(p=2\Rightarrow a=2^q+7.q^2\)

- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)

- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)

\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)

TH2: \(q=2\Rightarrow a=p^2+7.2^p\)

- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)

- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu

6 tháng 4 2022

Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!

17 tháng 11 2017

A B C H 50 37 O O

Kẻ \(AH\perp BC\). Đặt BH = x thì \(CH=60-x\)

Xét tam giác vuông ABH có: \(AH=tan50^o.x\)

Xét tam giác vuông ACH có: \(AH=tan37^o.\left(60-x\right)\)

Vậy nên ta có: \(tan50.x=tan37^o.\left(60-x\right)\)

\(\Leftrightarrow\left(tan50^o+tan37^o\right).x=tan37^o.60\)

\(\Leftrightarrow x=\frac{tan37^o.60}{tan50^o+tan37^o}\)  (cm)

Vậy thì \(AB=\frac{x}{cos50^o}=\frac{tan37^o.60}{cos50^o\left(tan50^o+tan37^o\right)}\)  (cm)

\(AH=x.tan50^o=\frac{tan50^o.tan37^o.60}{\left(tan50^o+tan37^o\right)}\)  (cm)

\(AC=\frac{AH}{sin37^o}=\frac{tan50^o.60}{cos37^o\left(tan50^o+tan37^o\right)}\)  (cm)

\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{30tan50^o.tan37^o.60}{tan50^o+tan37^o}=\frac{1800tan50^o.tan37^o}{tan50^o+tan37^o}\left(cm^2\right)\)

24 tháng 10 2019

Nhân cả 2 vế với \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)ta được 25=5\(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)

<=> \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)= 5 = \(\left(x-\sqrt{x^2+5}\right)\left(y-\sqrt{y^2+5}\right)\)

khai triển và rút gọn ta được \(x\sqrt{y^2+5}=-y\sqrt{x^2+5}\)

Nếu x=y=0 => M=0

xét x;y khác 0

\(\frac{\sqrt{x^2+5}}{\sqrt{y^2+5}}=\frac{-x}{y}\left(\frac{x}{y}< 0\right)\)<=>\(\frac{x^2+5}{y^2+5}=\frac{x^2}{y^2}=\frac{x^2+5-x^2}{y^2+5-y^2}=1=>\frac{x^2}{y^2}=1=>\frac{x}{y}=-1\left(\frac{x}{y}< 0\right).\)

hay x=-y => M= (-y)2017 +y2017 =0

vậy M=0

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

15 tháng 8 2019

( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8

\(\Rightarrow\)a ( a + b + c ) + bc = 8

\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)

\(\Rightarrow abc\left(a+b+c\right)\le16\)

Vậy GTLN của A là 16 

15 tháng 8 2019

mình cảm ơn ạ