Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2y^2-xy+2x-y-2=0\)
\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)
Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).
Ta có bảng giá trị:
x+y+1 | -3 | -1 | 1 | 3 |
x-2y+1 | -1 | -3 | 3 | 1 |
x | -10/3 (l) | -8/3 (l) | 2/3 (l) | 4/3 (l) |
y |
Vậy phương trình đã cho không có nghiệm nguyên.
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
Gọi phương trình đã cho là f(x)
Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)
f(0) = a0 = - t.Q(x) (1)
Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)
Từ (1) ta có a0 là số lẻ nên t phải là số lẻ
Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + a0 là tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ
Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)
Vậy f(x) không có nghiệm nguyên