K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

\(x+\sqrt{x}-2=\left(\sqrt{x}\right)^2-\sqrt{x}+2\sqrt{x}-2\)

                            \(=\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\)

                            \(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

                          

14 tháng 8 2020

\(x+\sqrt{x}-2=\left(x-\sqrt{x}\right)+\left(2\sqrt{x}-2\right)\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

4 tháng 8 2018

1)  \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)

3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

18 tháng 6 2019

c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)

d) Tương tự.

a,b) Không hiểu

18 tháng 6 2019

\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)

\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)

\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)

14 tháng 8 2020

\(x-7=\left(\sqrt{x}\right)^2-\left(\sqrt{7}\right)^2=\left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right)\)( \(x\ge0\))

\(x-6\sqrt{x}+9=\left(\sqrt{x}\right)^2-2.3.\sqrt{x}+3^2=\left(\sqrt{x}-3\right)^2\)( \(x\ge0\))

Em mới lớp 8 nên không dám chắc ạ :(

19 tháng 7 2018

a ) \(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)

b ) \(x-4\sqrt{x}+3=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2-1=\left(\sqrt{x}-2\right)^2-1\)

\(=\left(\sqrt{x}-2\right)^2-1^2=\left(\sqrt{x}-2+1\right)\left(\sqrt{x}-2-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\)

19 tháng 7 2018

\(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}.\left(\sqrt{x}+1\right)\)

\(x-4\sqrt{x}+3=\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2\right]-1^2=\left(\sqrt{x}-2\right)^2-1^2\)

\(=\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)\)

\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)

25 tháng 7 2019

1) \(x-y\)

\(=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

25 tháng 7 2019

2)\(1+x\sqrt{x}\)

\(=1^3+\left(\sqrt{x}\right)^3\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

5 tháng 7 2019

a) \(=9x-9\sqrt{xy}+4\sqrt{xy}-4y\)

\(=\left(9x-9\sqrt{xy}\right)+\left(4\sqrt{xy}-4y\right)\)

\(=9\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(9\sqrt{x}+4\sqrt{y}\right)\)

b)\(=\left(xy+\sqrt{x}.y\right)+\left(\sqrt{x}+1\right)\)

 \(=\sqrt{x}y\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)\left(\sqrt{x}.y+1\right)\)

5 tháng 7 2019

Thank kill cô :))

11 tháng 10 2020

a= 98 b=35 c=122 và d=129

11 tháng 10 2020

a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)

c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)

d, \(x-y-\sqrt{x}-\sqrt{y}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)

29 tháng 10 2020

\(x=3+2\sqrt{2}\)    

\(x-3-2\sqrt{2}=0\)    

\(x-\left(3+2\sqrt{2}\right)=0\)   Vậy nhân tử của \(x=3+2\sqrt{2}\)   là \(x-\left(3+2\sqrt{2}\right)\)