Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 9 = x2- 32
= (x-3)(x+3)
b) 4x2 - 25 = (2x)2 - 52
= (2x-5)(2x+5)
c) x6- y6 = (x3)2 - (y3)2
= (x3-y3)(x3+y3)
= (x-y)(x2-xy+y2)(x2+xy+y2)(x+y)
Ta có : 5x(x - 2y) + 2(2y - x)2
= 5x(x - 2y) + 2(x - 2y)2 (vì (2y - x)2 = (x - 2y)2 )
= (x - 2y)[5x + 2(x - 2y)]
= (x - 2y)(5x + 2x - 4y)
= (x - 2y)(7x - 4y)
b) 7x(y - 4)2 - (4 - y)3
= 7x(y - 4)2 - (4 - y)2(4 - y)
= 7x(y - 4)2 - (y - 4)2(4 - y)
= (y - 4)2(7x - 4 + y)
c) (4x - 8)(x2 + 6) - (4x - 8)(x + 7) + 9(8 - 4x)
= (4x - 8)(x2 + 6) - (4x - 8)(x + 7) - 9(4x - 8)
= (4x - 8)(x2 + 6 - x - 7 - 9)
= 2(x - 4)(x2 - x - 10)
a)\(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2\left(7x-4+y\right)\)
b)\(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
\(=\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)-9\left(4x-8\right)\)
\(=\left(4x-8\right)\left(x^2-x-10\right)=4\left(x-2\right)\left(x^2-x-10\right)\)
a.\(7x.\left(y-4\right)^2-\left(4-y\right)^3\)=\(7x.\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2.\left(7x+y-4\right)\)
b.\(\left(4x-8\right).\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9.\left(8-4x\right)\)
=\(\left(4x-8\right)\left(x^2+6-x-7-9\right)=\left(4x-8\right)\left(x^2-x-10\right)\)
phân tích thành nhân tử:
\(x^2-9=x^2-3^2=\left(x+3\right)\left(x-3\right)\)
\(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
\(9x^2+6xy+y^2=\left(3x\right)^2+2\cdot3x\cdot1+y^2=\left(3x+y\right)^2\)
\(x^2+4y^2+4xy=x^2+2\cdot x\cdot2y+\left(2y\right)^2=\left(x+2y\right)^2\)
a. \(x^3-0.25x=0\Rightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)=> \(x\in\left\{0;\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(x^2-10x=-25\)\(\Rightarrow x^2-10x+25=0\)
\(\Rightarrow\left(x-5\right)^2=0\Rightarrow x-5=0\Rightarrow x=5\)
a, \(x^2-9=x^2-3x+3x-9\)
\(=x\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x+3\right)\)
b, \(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)
c, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
d, \(9x^2+6xy+y^2=\left(3x\right)^2+2\left(3xy\right)+y^2\) \(=\left(3x+y\right)^2\)
e, \(6x-9-x^2=6x-18+9-x^2\) \(=6\left(x-3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x-3\right)\left(6-x-3\right)=\left(x-3\right)\left(3-x\right)\)
f, \(x^2+4y^2+4xy=x^2+2\left(2xy\right)+\left(2y\right)^2\)
\(\left(x+2y\right)^2\)
\(\)
Ta có:
a) 5x - 20y = 5(x - 4y)
b) 5x(x - 1) - 3x(x - 1) = x(x - 1)2
c) x(x + y) - 5x - 5y = x(x + y) - (5x + 5y) = x(x + y) - 5(x + y) = (x - 5)(x + y)
d) x2 - 9 = (x - 3)(x + 3)
e) 42 - 25 = (4 - 5)(4 + 5) f) x6 - y6 = (x4)2 - (y4)2 = (x4 - y4)(x4 + y4)
a) 5x - 20y = 5( x - 4y)
b) 5x(x-1) - 3x(x-1) =2x (x-1)
c) x2 - 9 = x2 - 32 = ( x-3)(x+3)
e) 42-25 = 42 - 52 = ( 4-5)(4+5)= -9
f) x6 - y6 = (x3)2 - (y3)2 = ( x3 - y3 ) ( x3 + y3)
= (x-y) ( x2 + xy + y2 ) ( x+y) ( x2 -xy +y2)
a, x^2-9=(x-3)(x+3)
b,4x^2-25=(2x-5)(2x+5)
c,x^6-y^6=(x^3-y^3)(x^3+y^3)
sao t k gửi dc câu tl?