K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a) \(x^2+2x-4y^2-4y=\left(x^2-4y^2\right)+\left(2x-4y\right)=\left(x+2y\right)\left(x-2y\right)+2\left(x-2y\right)\)

\(=\left(x-2y\right).\left(x+2y+2\right)\)

b)  \(x^4-6x^3+54x-81=\left(x^4-81\right)-\left(6x^3-54x\right)=\left(x^2-9\right)\left(x^2+9\right)-6x.\left(x^2-9\right)\)

\(=\left(x^2-9\right).\left(x^2+9-6x\right)=\left(x+3\right).\left(x-3\right).\left(x-3\right)^2=\left(x+3\right).\left(x-3\right)^3\)

c)  \(ax^2+ax-bx^2-bx-a+b=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+x.\left(a-b\right)-\left(a-b\right)=\left(a-b\right).\left(x^2+x-1\right)\)

d)  \(\left(x^2+y^2-2\right)^2-\left(2xy-2\right)^2=\left(x^2+y^2-2+2xy-2\right).\left(x^2+y^2-2-2xy+2\right)\)

\(=\left(x^2+2xy+y^2-4\right).\left(x^2+y^2-2xy\right)=\left[\left(x+y\right)^2-4\right].\left(x-y\right)^2\)

\(=\left(x+y+2\right).\left(x+y-2\right).\left(x-y\right)^2\)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

25 tháng 8 2018

a, x^4+x^3+x+1

=(x^4+x^3)+(x+1)

=x^3(x+1)+(x+1)

=(x+1)(x^3+1)

=(x+1)^2(x^2+x+1)

b,x^4-x^3-x^2+1

=(x^4-x^3)-(x^2-1)

=x^3(x-1)-(x-1)(x+1)

=(x-1)(x^3-x+1)

26 tháng 8 2018

a) \(x^4+x^3+x+1=x^3\left(x+1\right)+x+1=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)

b) \(x^4-x^3-x^2+1=x^3\left(x-1\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

                                                                                 \(=\left(x-1\right)\left(x^3-x-1\right)\)

c) x2y + xy2 - x - y = xy(x+y) - (x+y) = (x+Y)(xy-1)

Nhiều quá, lần sau lưu ý mỗi lần đăng ít ít thôi

16 tháng 11 2019

1) 

Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

CMTT vs y,z thì -1<=x,y,z<=1

TH1: -1<=x<0

=> x<x^2 do x âm và x^2 dương

CMTT => y<y^2; z<z^2

=> x+y+z<x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> LOẠI.

TH2: 0<=x,y,z<=1

=> x>=x^2; y>=y^2; z>=z^2

=> x+y+z>=x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1

=> (x,y,z)=(0;0;1) và các hoán vị

=> A=1.

26 tháng 9 2017

a,2x2(ax2+2bx+4c)=6x4-20x3-8x2

4ax2+4bx3+8cx2=6x4-20x3-8x2

sử dụng đồng nhất hệ số:

\(\Rightarrow\left\{{}\begin{matrix}4a=6\\4b=-20\\8c=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=6\\b=-5\\c=-1\end{matrix}\right.\)

b,(làm tương tự)

14 tháng 9 2015

12x3+4x2-27x-9=(12x3+4x2)-(27x-9)=4x2(3x+1)-32(3x+1)=(3x+1)(4x2-32)

cau b mjk chua ra 

bn thiếu rồi 

  • Trịnh Hoàng Đông Giang