Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
a.
\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\\ =\sqrt{5+2\cdot\sqrt{5}\cdot1+1}+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b.
\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\\ =\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}\\ =\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\\ =\sqrt{7}-1-\sqrt{7}-1=-2\)
c.
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-\sqrt{9-2\cdot3\cdot\sqrt{2}+2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
d.
\(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\\ =\sqrt{2+2\cdot\sqrt{2}\cdot1+1}+\sqrt{4-2\cdot2\cdot\sqrt{2}+2}\\ =\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\\ =\sqrt{2}+1+2-\sqrt{2}=3\)
P/s: Bạn chịu khó để ý thì sẽ thấy toàn ra hằng đẳng thức số 1 và 2 thôi :v
\(A=\sqrt{11-2\sqrt{10}}+\sqrt{9-2\sqrt{4}}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}+\sqrt{5}-\sqrt{10}-\sqrt{7}=\sqrt{10}-1+\sqrt{5}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{5}-\sqrt{7}-1\)
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
a, Nghe đề sai sai là lạ
b, Ta có : \(B=\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
\(=\sqrt{4}-\sqrt{6+2\sqrt{5}}+2\sqrt{5}=2+2\sqrt{5}-\sqrt{5+2\sqrt{5}+1}\)
\(=2+2\sqrt{5}-\sqrt{5}-1=\sqrt{5}+1\)
c, Ta có : \(C=\left(\sqrt{14}-\sqrt{10}\right)\left(\sqrt{6}+\sqrt{35}\right)\)
\(=\sqrt{84}-\sqrt{60}+\sqrt{490}-\sqrt{350}=2\sqrt{21}-2\sqrt{15}+7\sqrt{10}-5\sqrt{14}\)
d, Ta có : \(D=\sqrt{11-4\sqrt{7}}-\sqrt{2}\sqrt{8+3\sqrt{7}}\)
\(=\sqrt{4-4\sqrt{7}+7}-\sqrt{9+6\sqrt{7}+7}\)
\(=\sqrt{7}-2-3-\sqrt{7}=-5\)
\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2-2\sqrt{2.3}+3}+\sqrt{2+2\sqrt{2.3}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)
\(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}=\sqrt{2-2\sqrt{2.5}+5}+\sqrt{2+2\sqrt{2.5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)
\(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}\)
Ta có: \(\left(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}\right)^2=11+2\sqrt{8}+11-2\sqrt{8}+2\sqrt{\left(11+2\sqrt{8}\right)\left(11-2\sqrt{8}\right)}=22+2\sqrt{121-32}=22+2\sqrt{89}\)
=>\(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}=\sqrt{22+2\sqrt{89}}\)
a) \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{3}+\sqrt{2}\right)=2\sqrt{3}\)
b) \(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}=\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)=2\sqrt{5}\)
c) \(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}=chả-biết-nữa\)
sorry