K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

Câu a,b  hình như nhầm đề mình tự sửa nha ;-;

a, Ta có : \(\left(x^2-x-6\right)^2+\left(x-3\right)^2\)

\(=\left(x^2-3x+2x-6\right)^2+\left(x-3\right)^2\)

\(=\left(x-3\right)^2\left(x+2\right)^2+\left(x-3\right)^2\)

\(=\left(x-3\right)^2\left(\left(x+2\right)^2+1\right)\)

b, Ta có : \(\left(x^2-x-20\right)^2+\left(x+4\right)^2\)

\(=\left(x^2+4x-5x-20\right)^2+\left(x+4\right)^2\)

\(=\left(x+4\right)^2\left(x-5\right)^2+\left(x+4\right)^2\)

\(=\left(x+4\right)^2\left(\left(x-5\right)^2+1\right)\)

 

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt 

23 tháng 8 2015

a) ( x-2 )( x - 4 )(  x - 6 )( x  -8  ) + 15 

= ( x-  2 )( x - 8 )( x -  4)( x- 6  ) + 15

= ( x^2 - 10x + 16 )( x^2 - 10x + 24 ) + 15 

Đắt x^2 + x + 16 = y 

= y ( y + 8 ) + 15

= y^2 + 8y + 15

=  y^2 + 3y + 5y  + 15

=y ( y + 3 ) + 5 ( y + 3 )

= ( y+  5)( y + 3)

Thay vào 

4 tháng 7 2016

\(x^2-4x+3=x^2-3x-x+3=x\left(x-3\right)-\left(x-3\right)=\left(x-1\right)\left(x-3\right)\)

\(x^2+5x+4=x^2+4x+x+4=x\left(x+4\right)+\left(x+4\right)=\left(x+1\right)\left(x+4\right)\)

\(x^2-x-6=x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x+2\right)\left(x-3\right)\)

\(x^4+4=\left(x^2\right)^2+2.x^2.2+2^2-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2\right)^2-\left(2x^2\right)=\left(x^2+2+2x\right)\left(x^2-2-2x\right)\)

4 tháng 7 2016

Nhần mình ấn lộn bài sory m.n

3 tháng 10 2016

a)lát đề

b)x3+x+2

=x3-x2+2x+x2-x+2

=x(x2-x+2)+(x2-x+2)

=(x+1)(x2-x+2)

c)x4+64

=(x2)2+82+2x2*8-2x2*8 

=(x2+8)2-(4x)2

=(x2-4x+8)(x2+4x+8) . 

31 tháng 12 2018

\(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}=\frac{\left(x^4-x^2-2\right)+\left(x^3-2x\right)}{\left(x^4-x^2-2\right)+\left(2x^3-4x\right)}\)

\(=\frac{\left(x^2-2\right)\left(x^2+1\right)+x\left(x^2-2\right)}{\left(x^2-2\right)\left(x^2+1\right)+2x\left(x^2-2\right)}=\frac{\left(x^2-2\right)\left(x^2+x+1\right)}{\left(x^2-2\right)\left(x^2+2x+1\right)}\)

\(=\frac{x^2+x+1}{\left(x+1\right)^2}\)

31 tháng 12 2018

\(F\left(x\right)=\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)

\(=\frac{\left(x^4+x^3+x^2\right)-2x^2-2x-2}{\left(x^4+2x^3+x^2\right)-\left(2x^2+4x+2\right)}\)

\(=\frac{x^2\left(x^2+x+1\right)-2\left(x^2+x+1\right)}{x^2\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)}=\frac{x^2+x+1}{x^2+2x+1}\)

16 tháng 8 2016

\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)

\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)

t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại

17 tháng 8 2016

Cảm ơn nhiều nhé =))