Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x4 + 4x3 + 5x2 + 2x +1
= (4x4 + 4x3 + x2 ) + ( 2x2 + 1 ) + 1
= x2(2x + 1 )2 + 2x(2x + 1) +1
= (x(2x + 1 ) + 1)2
= (2x + x + 1)2
4x4+4x3+5x2+2x+1
=(4x4+4x3+x2) + (2x2+1) +1
= x2(2x+1)2 + 2x(2x+1) +1
= (x(2x+1)+1)2
=(2x2+x+1)2
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
ta có :4.x^4 +4.x^3 +5.x^2 +2x+1=(2.x^2)^2 +2.2.(x^2).x +x^2 +4.x^2 +2x +1
=(2.x^2 +x)^2 +2.(2x^2 +x) .1 +1
=(2.x^2 +x +1)^2
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
a: \(=6x^3-12x^2+x^2-2x+x-2\)
\(=\left(x-2\right)\left(6x^2+x+1\right)\)
b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)
\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)
\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)
c: \(=4x^3+x^2+4x^2+x+4x+1\)
\(=\left(4x+1\right)\left(x^2+x+1\right)\)
\(x^4+2x^3-4x-4\)
\(=x^4+2x^3-4x-4+2x^2-2x^2\)
\(=\left(x^4-2x^2\right)+\left(2x^3-4x\right)+\left(2x^2-4\right)\)
\(=x^2\left(x^2-2\right)+2x\left(x^2-2\right)+2\left(x^2-2\right)\)
\(=\left(x^2+2x+2\right)\left(x^2-2\right)\)
\(=\left(x^2+2x+2\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
\(x^4-2x^3+2x-1\)
\(=\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)\)
\(=x\left(x-1\right)^3+\left(x-1\right)^3\)
\(=\left(x+1\right)\left(x-1\right)^3\)