Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(a+b-a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=-a^4\left(c-a\right)-a^4\left(a-b\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=\left(b^4-a^4\right)\left(c-a\right)+\left(c^4-a^4\right)\left(a-b\right)\)
\(=\left(b^2+a^2\right)\left(b^2-a^2\right)\left(c-a\right)+\left(c^2-a^2\right)\left(c^2+a^2\right)\left(a-b\right)\)
\(=\left(b^2+a^2\right)\left(b-a\right)\left(b+a\right)\left(c-a\right)+\left(c-a\right)\left(c+a\right)+\left(c^2+a^2\right)\left(a-b\right)\)
\(=\left(b-a\right)\left(c-a\right)[\left(b^2+a^2\right)\left(a+b\right)-\left(c+a\right)\left(c^2+a^2\right)]\)
\(=\left(b-a\right)\left(c-a\right)\left(ab^2+a^3+b^3+a^2b-c^3-ac^2-a^3-a^2c\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(ab^2+b^3+a^2b-c^3-ac^2-a^2c\right)\)
\(=\left(b-a\right)\left(c-a\right)[\left(ab^2-ac^2\right)+\left(a^2b-a^2c\right)+\left(b^3+c^3\right)]\)
\(=\left(b-a\right)\left(c-a\right)[a\left(b^2-c^2\right)+a^2\left(b-c\right)+\left(b-c\right)\left(b^2+bc+c^2\right)]\)
\(=\left(b-a\right)\left(c-a\right)\left(b-c\right)\left(ab+ac+a^2+b^2+c^2+bc\right)\)
ap dung :(a-b-c)^2=a^2+b^2+c^2-2ab-2bc-2ca
ta dc:A=(a^2)^2+(b^2)^2+(c^2)^2-2.a^2.b^2-2.b^2-c^2-2.c^2.a^a
=>a=(a^2-b^2-c^2)^2
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2+b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2\right)+b^4\left(b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)-b^4\left(b^2-c^2\right)-b^4\left(a^2-b^2\right)+c^4\left(a^2-b^2\right)\)
\(=\left(a^4-b^4\right)\left(b^2-c^2\right)+\left(c^4-b^4\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(b^2-c^2\right)-\left(b^2-c^2\right)\left(c^2+b^2\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2+b^2-c^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2-c^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)\left(b+c\right)\left(a-c\right)\left(a+c\right)\)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
đơn giản wá
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(\Leftrightarrow\text{=a^4(b-c)-b^4[(b-c)+(a-b)]+c^4(a-b) =(b-c)(a^4-b^4)+(a-b)(c^4-b^4)}\)
\(\text{=(b-c)(a^2-b^2)(a^2+b^2)+(a-b)(c^2-b^2)... =(b-c)(a-b)(a+b)(a^2+b^2)-(a-b)(b-c)(b+... }\)
\(\text{=(b-c)(a-b)(a^3+ab^2+ba^2+b^3-bc^2-b^3-... mà ta có a^3+ab^2+ba^2-bc^2-c^3-cb^2 }\)
\(\text{=(a^3-c^3)+b^2(a-c)+b(a^2-c^2) =(a-c)(a^2+ac+c^2)+b^2(a-c)+b(a-c)(a+c) }\)
\(\text{=(a-c)(a^2+ac+c^2+b^2+ab+ac) } \)
\(\text{từ đó suy ra a^4(b-c)+b^4(c-a)+c^4(a-b) =(a-b)(b-c)(c-a)(a^2+b^2+c^2+ab+bc+ca)}\)