Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2.\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2.\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)
\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)
Đặt \(t=x^2-11x+30\)
\(\Rightarrow\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)
\(=t.\left(t-2x\right)-24x^2\)
\(=t^2-2xt-24x^2\)
\(=\left(t^2-2xt+x^2\right)-25x^2\)
\(=\left(t-x\right)-\left(5x\right)^2\)
\(=\left(t-6x\right)\left(t+4x\right)\)
\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)
Tham khảo nhé~
a)18x2-12x
=3x(6x-4)
b)3x2-11x+6
=x(3x-11+6)
=x(3x-5)
c)x3+6x2+11x+6
=x2(x+23
\(18x^2-12x\)
\(=6x\left(3x-2\right)\)
\(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
a, = 6x4+19x2+15
=6x4+9x2+10x2+15
=3x2(2x2+3)+5(2x2+3)
=(3x2+5)(2x2+3) Giải câu a vậy nha
1, x3+ 6x2+11x+6
= x3 + 2x2 + 4x2 + 8x + 3x + 6
= x2(x + 2) + 4x(x + 2) + 3(x + 2)
= (x + 2)(x2 + 4x + 3)
2, x4+3x3-7x2-27x-18
= x4 + 3x3 - 9x2 + 2x2 - 27x -18
= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)
= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)
= (x2 - 9)(x2 + 3x + 2)
= (x + 3)(x - 3)(x2 + 3x + 2)
3, x3-8x2+x+42
= x3 - 7x2 - x2 + 7x - 6x + 42
= (x3 - 7x2) - (x2 - 7x) - (6x - 42)
= x2(x - 7) - x(x - 7) - 6(x - 7)
= (x - 7)(x2 - x - 6)
4, x4+5x3-7x2-41x-30
= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30
= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)
= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)
= (x3 + 4x2 - 11x - 30)(x + 1)
5, x5+x-1
= x5 - x4 + x3 + x4 - x3 + x2 - x2+ x -1
= x3(x2 - x + 1)+ x2(x2 - x + 1)- (x2 - x + 1)
= (x2 - x + 1)(x3 + x2 - 1)
6, x5-x4-1
= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)
= (x2 - x + 1)(x3 - x - 1)
1, x 3+ 6x 2+11x+6
= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6
= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿
= ﴾x + 2﴿﴾x 2 + 4x + 3﴿
2, x 4+3x 3‐7x 2‐27x‐18
= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18
= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿
= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿
= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿
=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿
3, x 3‐8x 2+x+42
= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42
= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿
= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿
= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿
4, x 4+5x 3‐7x 2‐41x‐30
= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30
= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿
= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿
= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿
5, x 5+x‐1
= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1
= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1
= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1
= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
1. 3x^2+2x-1
=3x^2+3x-x-1
=3x(x+1)-(x+1)
=(x+1)(3x-1)
2. x^3+6x^2+11x+6
=x^3+5x^2+6x+x^2+5x+6
=x(x^2+5x+6)+(x^2+5x+6)
=(x+1)(x^2+5x+6)
=(x+1)(x^2+3x+2x+6)
=(x+1)(x+2)(x+3)
3. x^4+2x^2-3
=x^4-x^2+3x^2-3
=x^2(x^2-1)+3(x^2-1)
=(x^2-1)(x^2+3)
=(x+1)(x-1)(x^2+3)
4. ab+ac+b^2+2bc+c^2
=a(b+c)+(b+c)^2
=(b+c)(a+b+c)
5. a^3-b^3+c^3+3abc
=(a-b)^3+3ab(a-b)+c^3+3abc
=(a-b+c)^3-3(a-b)c(a-b+c)+3ab(a-b+c)
=(a-b+c)(a^2+b^2+c^2-2ab+2ac-2bc-3ac+3...
=(a-b+c)(a^2+b^2+c^2+ab+bc-ca)
=1/2.(a-b+c)(a^2+2ab+b^2+b^2+2bc+c^2+c...
=1/2.(a-b+c)[(a+b)^2+(b+c)^2+(c-a)^2]
P/s: Ko chắc đâu nhé :)
1. 3x^2 + 2x – 1
3x^2 + 3x – x – 1
3x(x + 1) – (x + 1)
(x + 1)(3x – 1)
2. x^3 + 6x^2 +11x + 6
x^3 + 3x^2 + 3x^2 + 9x + 2x + 6
x^2(x + 3) + 3x(x + 3) + 2(x + 3)
(x + 3)(x^2 + 3x + 2)
(x + 3)(x^2 + 2x + x + 2)
(x + 3)[x(x + 2) + (x+2)]
(x + 3)(x + 2)(x + 1)
x^4 + 2x^2 – 3
=x^4 -x + 2x^2 +x -3.
= x(x^3 – 1 ) +(2x^2 + x -3)
=x(x-1)(x^2+X+1) + (x-1)(x+3/2)
=(x-1) (x(x^2 +x +1) +3+ 3/2)…
đến đó thì mình tự nhân nha\
4. ab + ac + b^2 + 2bc + c^2
a(b + c) + (b + c)^2
(b + c)(a + b + c)
Le Nhat Phuong cái 5 thì mình ko chắc nhưng vì bn nhanh nhất và đúng nhiều nên được thưởng :)
a, x^4+6x^3+11x^2+6x+1
= x^4 + 6x^3 + 9x² + 2x² + 6x + 1
= x^4 + 9x² + 1 + 6x^3 + 2x² + 6x
= x^4 + 9x² + 1² + 2.x².3x + 2.x².1 + 2.3x.1
= (x² + 3x + 1)²
Mình làm được ý a nên tk 1 tk