Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 + b3 + c3 - 3abc
= (a3 + 3a2b + 3ab2 + b3 ) + c3 - 3abc - 3a2b - 3ab2
=[(a+b)3 + c3 ]- (3abc+3a2b+3ab2)
=(a+b+c)[(a+b)2 - (a+b)c + c2 ] - 3ab(c+a+b)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2+b2+c2-ab-bc-ca)
a) (x+y)3-(x-y)3
= [(x + y)3 - 3(x + y)2(x - y) + 3(x + y)(x - y)2 - (x - y)3 ]
rùi nhé!! 564576578768797809678458426546456457657426
(x + y)3 - (x - y)3
= [(x + y) - (x - y) [(x + y)2 + (x + y)(x - y) + (x - y)2]
nãy làm lộn!! 45746746356545645646464562452524534645765776345245646
dùng hằng đẳng thức để phân tích:
1) \(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+b^2-a^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
2)\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
3)\(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3.\left(2x\right)^2.y+3.2x.y^2+y^3=\left(2x+y\right)^3\)
\(x^4+2019x^2+2018x+2019\)
\(=x^4+x^2+1+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
Đặt A = a + b ; B = a - b
A^3 + B^3
= (A + B)(A² - AB + B² )
= (a + b + a - b)[(a + b)² - (a + b)(a - b) + (a - b)²]
= 2a( a² + 2ab + b² - a² + b² + a² - 2ab + b² )
= 2a( a² + 3b²)
(a+b)\(^3\) - (a-b)\(^3\)
= [ (a+b) - (a-b) ] [ (a+b)\(^2\) + (a+b)(a-b) + (a-b)\(^2\) ]
= [ a+b - a+b ] [ a\(^2\) + 2ab + b\(^2\) + a\(^2\) - b\(^2\) + a\(^2\) - 2ab + b\(^2\) ]
= 2b ( 3a\(^2\) + b\(^2\) )