\(2x^2+3x-27\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a) \(2x^2+3x-27\)

\(=2x^2-6x+9x-27\\ =\left(2x^2-6x\right)+\left(9x-27\right)\\ =2x\left(x-3\right)+9\left(x-3\right)\\ =\left(2x+9\right)\left(x-3\right)\)

b) \(x^2-10xy+16y^2\)

\(=x^2-10xy+16y^2+9y^2-9y^2\\ =x^2-10xy+25y^2-9y^2\\ =\left(x-5y\right)^2-9y^2\\ =\left(x-5y+3y\right)\left(x-5y-3y\right)\\ =\left(x-2y\right)\left(x-8y\right)\)

c) \(2xy-x^2-y^2+4\)

\(=4-\left(x^2-2xy+y^2\right)\\ =4-\left(x-y\right)^2\\ =\left(2-x+y\right)\left(2+x-y\right)\)

d) \(3x^2+3y^2-6xy-12\)

\(=3\left(x^2+y^2-2xy-4\right)\\ =3\left(x^2-2xy+y^2-4\right)\\ =3\left[\left(x-y\right)^2-4\right]\\ =3\left(x-y-2\right)\left(x-y+2\right)\)

11 tháng 12 2018

\(x^2+5x+6\)

\(=x^2+3x+2x+6\)

\(=x.\left(x+3\right)+2.\left(x+3\right)=\left(x+3\right).\left(x+2\right)\)

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

11 tháng 12 2018

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

4 tháng 11 2016

a , 3x2 + 3y2 - 6xy - 12

= 3 ( x2 + y2 - 2xy - 4 )

= 3 ( x - y )2 - 22

= 3 ( x - y + 2 ) ( x - y - 2 )

 

 

20 tháng 4 2017

Bài giải:

a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2

= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]

= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)

= (x – y)2 – (z – t)2

= [(x – y) – (z – t)] . [(x – y) + (z – t)]

= (x – y – z + t)(x – y + z – t)

2 tháng 6 2017

48. Phân tích các đa thức sau thành nhân tử:

a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;

c) x2 – 2xy + y2 – z2 + 2zt – t2.

Bài giải:

a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2

= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]

= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)

= (x – y)2 – (z – t)2

= [(x – y) – (z – t)] . [(x – y) + (z – t)]

= (x – y – z + t)(x – y + z – t)

11 tháng 12 2018

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

Tham khảo nhé~

19 tháng 7 2019

a) \(x^2+4x-y^2+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

19 tháng 7 2019

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

11 tháng 12 2018

\(x^2-3x+xy-3y\)

\(=x\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x-3\right)\)

\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu