Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
Đặt x^2 - 3x - 1 = A
\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)
\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)
\(=\left(A-9\right)\left(A-3\right)\)
Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
c)\(x^3-x^2-5x+125\)
\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Mình có việc bận nên chỉ đưa được kết quả ý d) thật lòng mong các bạn tự tham khảo và giải
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
a) \(4x^4+y^4\)
\(=\left(2x^2\right)^2+2.2x^2.y^2+\left(y^2\right)^2-2.2x^2.y^2\)
\(=\left(2x^2+y^2\right)^2-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)
b) \(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1\right)^2-2\left(x^2-3x-1\right).6+36-9\)
\(=\left(x^2-3x-1-6\right)^2-3^2\)
\(=\left(x^2-3x-7\right)^2-3^2\)
\(=\left(x^2-3x-7-3\right)\left(x^2-3x-7+3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
c) \(x^3-x^2-5x+125\)
\(=x^3+5x^2-6x^2-30x+25x+125\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d) \(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=xy\left(x+y\right)+yz\left(y+z\right)+xyz+zx\left(z+x\right)+xyz\)
\(=xy\left(x+y\right)+yz\left(y+z+x\right)+zx\left(z+x+y\right)\)
\(=xy\left(x+y\right)+z\left(x+y+z\right)\left(y+x\right)\)
\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=\left(x+y\right)\left(xy+zx+yz+z^2\right)\)
\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)
\(=\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
a) ta có : \(4x^4+y^4=4x^4+4x^2y^2+y^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b) ta có : \(\left(x^3-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1\right)^2-3\left(x^2-3x-1\right)-9\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1\right)\left(x^2-3x-4\right)-9\left(x^2-3x-4\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
c) ta có : \(x^3-x^2-5x+125=x^2+5x^2-6x^2-30x+25x+125\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)=\left(x^2-6x+25\right)\left(x+5\right)\)
d) ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=x^2y+xy^2+y^2z+xyz+yz^2+z^2x+zx^2+xyz\)
\(=y\left(x^2+xy+yz+xz\right)+z\left(yz+zx+x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2+xy+yz+xz\right)\)
\(1,x^3-7x+6\)
\(=x^3+3x^2-3x^2-9x+2x+6\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+2\right)\)
\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
\(2,x^3-9x^2+6x+16\)
\(=x^3+x^2-10x^2-10x+16x+16\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)
\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)
mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn
Sửa đề chút :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
c) x3 + y3 + z3 - 3xyz
= x3 + 3x2y + 3xy2 + y3 + z3 - 3xyz - 3x2y - 3xy2
= (x+y)3 + z3 - 3xy.( z+x+y)
= (x+y+z).[(x+y)2 - (x+y).z + z2 ] - 3xy.(x+y+z)
= (x+y+z). ( x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x+y+z) .(x2 + y2 + z2 - xy - xz -yz)
e) (a+b-c)2 - (a-c)2 - 2ab + 2bc
= (a+b-c - a+c).(a+b+c+a-c) - 2b.(a-c)
= b.(2a+b) - 2b.(a-c)
= b.(2a+b - a +c)
= b.( a+b+c)
xl bn nha! mk chỉ nghĩ đk 2 câu thoy, 1 câu bn kia làm r! 2 câu còn lại bn đợi người tiếp theo làm nhé
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
1 ) \(x^2+xy+x=x\left(x+1+y\right)\)
2 ) \(3x^2\left(x-1\right)+5x\left(1-x\right)=3x^2\left(x-1\right)-5x\left(x-1\right)=\left(3x^2-5x\right)\left(x-1\right)\)
3 ) \(2x\left(x+y\right)-3x-3y=2x\left(x+y\right)-3\left(x+y\right)=\left(2x-3\right)\left(x+y\right)\)
4 ) \(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)
5 ) \(4x^2-36=4\left(x^2-9\right)=4\left(x+3\right)\left(x-3\right)\)
@Thục Trinh giải đi
1.
\(3x^2-16x+5\\ =3x^2-x-15x+5\\ =x\left(3x-1\right)-5\left(3x-1\right)\\ =\left(x-5\right)\left(3x-1\right)\)
2.
\(3x^3-14x^2+4x+3\\ =\left(3x^3+x^2\right)-\left(15x^2+5x\right)+\left(9x+3\right)\\ =x^2\left(3x+1\right)-5x\left(3x+1\right)+3\left(3x+1\right)\\ =\left(x^2-5x+3\right)\left(3x+1\right)\)
3. \(x^8+x^7+1\\ =\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\\ =x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3+1\right)\left(x^3-1\right)+x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x\left(x^3+1\right)\left(x+1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)[x^2\left(x^3+1\right)\left(x-1\right)+x\left(x^3+1\right)\left(x-1\right)+1]\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+x^5-x^4+x^2-x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)4.
\(64x^4+y^4\\ =\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\\ =\left(8x^2+y^2\right)^2-16x^2y^2\\ =\left(8x^2+y^2-4xy\right)\left(8x^2+y+4xy\right)\)
5.
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\\ =\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\\ =\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\\=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+4a^2+2a^2\right)+a^4\\=\left(x^2+5ax+4a^2\right)+2a^2\left(x^2+5ax+4a^2\right)+a^4\\ =\left(x^2+5ax+5a^2\right)^2\)