K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2022

8-(x-1)3 = 23-(x-1)3

= (2-x+1)[4+2(x-1)+(x-1)2]

= (3-x)(4+2x+2+2x-2)

=(3-x)(4+4x)=4(3-x)(1+x)

23 tháng 8 2022

làm như nào đấy chỉ vs :vv

 

18 tháng 10 2020

1. \(B=\left(x-2\right)\left(x+2\right)\left(x+3\right)-\left(x+1\right)^3\)

\(=\left(x^2-4\right)\left(x+3\right)-\left(x^3+3x^2+3x+1\right)\)

\(=x^3+3x^2-4x-12-x^3-3x^2-3x-1\)

\(=-7x-13\)

2. \(64-x^2-y^2+2xy=64-\left(x^2+y^2-2xy\right)\)

\(=64-\left(x-y\right)^2=\left(8+x-y\right)\left(8-x+y\right)\)

3. \(2x^3-x^2+2x-1=0\)

\(\Leftrightarrow x^2.\left(2x-1\right)+\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)

Vì \(x^2\ge0\)\(\Rightarrow x^2+1>0\)

\(\Rightarrow2x-1=0\)\(\Rightarrow2x=1\)\(\Rightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

18 tháng 10 2020

Bài 1.

B = ( x - 2 )( x + 2 )( x + 3 ) - ( x + 1 )3

= ( x2 - 4 )( x + 3 ) - ( x3 + 3x2 + 3x + 1 )

= x3 + 3x2 - 4x - 12 - x3 - 3x2 - 3x - 1

= -7x - 13

Bài 2.

64 - x2 - y2 + 2xy

= 64 - ( x2 - 2xy + y2 )

= 82 - ( x - y )2

= ( 8 -  x + y )( 8 + x - y )

Bài 3.

2x3 - x2 + 2x - 1 = 0

<=> ( 2x3 - x2 ) + ( 2x - 1 ) = 0

<=> x2( 2x - 1 ) + 1( 2x - 1 ) = 0

<=> ( 2x - 1 )( x2 + 1 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( vì x2 + 1 ≥ 1 > 0  ∀ x )

7 tháng 12 2018

Đặt \(x^2-2x+4=a\)

Khi đó \(\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8=\left(a-1\right)\left(a+1\right)-8\)

                                                                                    \(=a^2-1-8\)

                                                                                    \(=a^2-9\)

                                                                                      \(=\left(a-3\right)\left(a+3\right)\)

                                                                                      \(=\left(x^2-2x+4-3\right)\left(x^2-2x+4+3\right)\)

                                                                                      \(=\left(x^2-2x+1\right)\left(x^2-2x+7\right)\)

                                                                                       \(=\left(x-1\right)^2\left(x^2-2x+7\right)\)

25 tháng 7 2019

Đặt \(2x^2-x-2=t\)

Ta có:

\(A=\left(t+3\right)\left(t-3\right)+8\)

\(A=t^2-9+8\)

\(A=\left(t-1\right)\left(t+1\right)\)

Thay vào ta được:

\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)

18 tháng 10 2018

I don't nơ

18 tháng 10 2018

đa thức và nhân tử là gì

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

24 tháng 9 2019

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)

22 tháng 12 2019

(x+1)(x+3)(x+5)(x+8)+15

=[(x+1)(x+7)][(x+3)(x+5)]+15

=(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7

=>x2+8x+15=t+8

=>(x2 +8x+7)(x2+8x+15)+15

=t(t+8)+15

=t2+8t+15

=t2+3t+5t+15

=t(t+3)+5(t+3)

=(t+3)(t+5)

=(x2+8x+10)(x2+8x+12)

22 tháng 12 2019

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(\Rightarrow A=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)

        \(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)

\(\Rightarrow A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t+1\right)\left(t-1\right)\)

\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)\(=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)