K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

`(x-1)^2-2(x-1)(2x+1)+(2x+1)^2`

`=(x-1-2x-1)^2`

`=(-x-2)^2`

18 tháng 7 2021

\(\left(x-1\right)^2-2\left(x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left(x-1-2x-1\right)^2=\left(-x-2\right)^2=\left(x+2\right)^2\)

26 tháng 7 2018

\(e,x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)

\(f,x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

30 tháng 9 2018

\(x^2-y^2+2x+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x-y+1\right)\left(x+y+1\right)\)

hk tốt

^^

15 tháng 10 2016

\(=x^3+1+2x^2+2x\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

15 tháng 10 2016

a) \(x^4-2x^3+2x-1\)

\(=x^4-x^3-x^3+2x-2+1\)

\(=\left(x^4-x^3\right)+\left(2x-2\right)-\left(x^3-1\right)\)

\(=x^3\left(x-1\right)+2\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^3+2-x^2-x-1\right)\)

\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

\(=\left(x-1\right)\left[\left(x^3-x^2\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

b) \(x^4+2x^3+2x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+2x\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

11 tháng 10 2018

      \(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)

\(=2.\left[x^4+x^2+1+2x^3+2x+2x^2\right]-\left(4x^2+4x+1\right)-\left(x^4+4x^3+4x^2\right)\)

\(=x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)

Chúc bạn học tốt.

16 tháng 3 2020

(x^2 - 2x)(x^2 - 2x - 1) - 6

đặt x^2 - 2x = a              

= a(a - 1) - 6

= a^2 - a - 6

= a^2 - 3a + 2a - 6

= a(a - 3) + 2(a - 3)

= (a + 2)(a - 3)

= (x^2 - 2x + 2)(x^2 - 2x - 3)

= (x - 3)(x + 1)(x^2 - 2x + 2)

4 tháng 8 2017

a, \(x^4-x^3-x^3+x^2-x^2+x+x-1\)\(1\)

=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\)

=\(\left(x-1\right)\left(x^3+x^2-x+1\right)\)

b, \(\left(ab-1\right)^2+\left(a+b\right)^2\)

=\(a^2b^2-2ab+1+a^2+2ab+b^2\)

=\(a^2b^2+a^2+b^2+1\)

=\(a^2\left(b^2+1\right)+\left(b^2+1\right)\)

=\(\left(b^2+1\right)\left(a^2+1\right)\)

c,\(x^4+2x^3+2x^2+2x+1\)

=\(x^4+x^3+x^3+x^2+x^2+x+x+1\)

=\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)

=\(\left(x+1\right)^2\left(x^2+1\right)\)

25 tháng 7 2019

Đặt \(2x^2-x-2=t\)

Ta có:

\(A=\left(t+3\right)\left(t-3\right)+8\)

\(A=t^2-9+8\)

\(A=\left(t-1\right)\left(t+1\right)\)

Thay vào ta được:

\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)

25 tháng 10 2017

Ta có : \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)