Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)
c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)
d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
t i c k cho mình nha
= (x3-1)+3x(x-1) = (x-1)(x2+x+1)+3x(x-1)
=(x-1)(x2+x+1+3x)
=(x-1)(x2+4x+1)
a) A=x3+3x2+3x
A=x3+3x2.1+3x.12+13
A=(x+1)3
b)A=x3-3x2+3x-1
A=x3-3x2.1+3x.12-13
A=(x-1)3
c)A=x3+6x2+12x
A=x3+3.2x2+3.22x+13
A=(x+1)3
a)x3+3x2+3x+1
=x3+3x2*1+3x*12+13
=(x+1)3
b)(x+y)2-9x2
=y2+2xy+x2-9x2
=y2-2xy+4xy-8x2
=y(y-2x)+4x(y-2x)
=(y-2x)(y+4x)
B1:
a) \(5\left(x^2+y^2\right)-20x^2y^2\)
\(=5\left(x^2-4x^2y^2+y^2\right)\)
b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)
B2:
a) Đặt \(x^2-3x+1=y\)
=> \(y^2-12y+27\)
\(=\left(y^2-12y+36\right)-9\)
\(=\left(y-6\right)^2-3^2\)
\(=\left(y-9\right)\left(y-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)
b) Đặt \(x^2+7x+11=t\)
Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
x3 - 3x2 - 3x - 1 -y3
= (x3 - y3) - (3x2 + 3x) - 1
= [(x-y)x2 + (x-y)xy + (x-y)y2 ] - 3x(x+1) -1
= (x-y)(x2+xy+y2) - 3x(x+1) - 1
\(A=\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
Đặt \(t=x^2+3x+1\) thì A thành
\(t\left(t-4\right)-5=t^2-4t-5\)
\(t^2-5t+t-5=t\left(t-5\right)+\left(t-5\right)\)
\(=\left(t-5\right)\left(t+1\right)=\left(x^2+3x+1-5\right)\left(x^2+3x+1+1\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
đặt a=x^2+3x+1
phương trình đã cho thành phương trình: a(a-4)-5
=a^2-4a-5
=a^2+a-5a-5
= a(a+1)-5(a+1)
=(a-5)(a+1)
=(x^2+3x-4)(x^2+3x+2)
=(x-1)(x+1)(x+2)(x+4)