K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

\(A=\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)

Đặt \(t=x^2+3x+1\) thì A thành

\(t\left(t-4\right)-5=t^2-4t-5\)

\(t^2-5t+t-5=t\left(t-5\right)+\left(t-5\right)\)

\(=\left(t-5\right)\left(t+1\right)=\left(x^2+3x+1-5\right)\left(x^2+3x+1+1\right)\)

\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

 

21 tháng 8 2019

đặt a=x^2+3x+1

phương trình đã cho thành phương trình: a(a-4)-5

=a^2-4a-5

=a^2+a-5a-5

= a(a+1)-5(a+1)

=(a-5)(a+1)

=(x^2+3x-4)(x^2+3x+2)

=(x-1)(x+1)(x+2)(x+4)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

3 tháng 7 2016

a) =x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 7 2016

\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)

b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)

c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)

d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\) 

t i c k cho mình nha

29 tháng 10 2015

= (x3-1)+3x(x-1)    = (x-1)(x2+x+1)+3x(x-1)

=(x-1)(x2+x+1+3x)

=(x-1)(x2+4x+1)


 

12 tháng 9 2020

a) A=x3+3x2+3x

A=x3+3x2.1+3x.12+13

A=(x+1)3

b)A=x3-3x2+3x-1

A=x3-3x2.1+3x.12-13

A=(x-1)3

c)A=x3+6x2+12x

A=x3+3.2x2+3.22x+13

A=(x+1)3

12 tháng 9 2020

A = x3 + 3x2 + 3x = (x3 + 3x2 + 3x + 1) - 1 =  (x + 1)3 - 13 = (x + 1 - 1)[(x + 1)2 + (x + 1) + 1] = x(x2 + 3x + 3)

A = x3 - 3x2 + 3x - 1 = (x - 1)3

A = x3 + 6x2 + 12x = (x3 + 6x2 + 12x + 8) - 8 = (x + 2)3 - 23 = (x + 2 - 2)[(x  + 2)2 + 2(x + 2) + 4) = x(x2 + 6x + 12)

15 tháng 7 2016

a)x3+3x2+3x+1

=x3+3x2*1+3x*12+13

=(x+1)3

b)(x+y)2-9x2

=y2+2xy+x2-9x2

=y2-2xy+4xy-8x2

=y(y-2x)+4x(y-2x)

=(y-2x)(y+4x)

1 tháng 9 2020

B1:

a) \(5\left(x^2+y^2\right)-20x^2y^2\)

\(=5\left(x^2-4x^2y^2+y^2\right)\)

b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)

1 tháng 9 2020

B2: 

a) Đặt \(x^2-3x+1=y\)

=> \(y^2-12y+27\)

\(=\left(y^2-12y+36\right)-9\)

\(=\left(y-6\right)^2-3^2\)

\(=\left(y-9\right)\left(y-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)

b) Đặt \(x^2+7x+11=t\)

Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

20 tháng 10 2018

x3 - 3x2 - 3x - 1 -y3
= (x3 - y3) - (3x2 + 3x) - 1
= [(x-y)x+ (x-y)xy + (x-y)y2 ] - 3x(x+1) -1
= (x-y)(x2+xy+y2) - 3x(x+1) - 1