K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

a/ x3 + xz + y2 z - xyz + y3 

= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)

= (x2 - xy + y2)(x + y + z)

5 tháng 11 2016

Nhiều vậy. Xíu m làm

28 tháng 9 2017

1.Phân tích đa thức thành nhân tử

a)\(8x^3+\dfrac{1}{27}\)

\(=\left(2x\right)^3+\left(\dfrac{1}{3}\right)^3\)

\(=\left(2x+\dfrac{1}{3}\right)\left(\left(2x\right)^2-2x\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right)\)

\(=\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)

b)\(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)

\(=\left(x-y+5\right)^2-2.\left(x-y+5\right).1+1^2\)

\(=\left(x-y+5-1\right)^2\)

\(=\left(x-y+4\right)^2\)

c)\(125-x^6\)

\(=5^3-\left(x^2\right)^3\)

\(=\left(5-x^2\right)\left(5^2+5x^2+\left(x^2\right)^2\right)\)

\(=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)

d)\(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)

\(=\left(x^2+4y^2-5\right)^2-4^2\left(\left(xy\right)^2+2xy.1+1^2\right)\)

\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)

\(=\left(x^2+4y^2-5\right)^2-\left(4xy+4\right)^2\)

\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)

\(=\left(x^2-2.x.2y+\left(2y\right)^2-9\right)\left(x^2+2.x.2y+\left(2y\right)^2-1\right)\)

\(=\left(\left(x-2y\right)^2-3^2\right)\left(\left(x+2y\right)^2-1^2\right)\)

\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)

29 tháng 9 2017

Đây bạnPhân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

1 tháng 11 2016

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 9 2016

mk học lớp 7 thui

1 tháng 11 2016

Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...

a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)

\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)

\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)

b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)

f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)

\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)

g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)

\(=3\left(a-b+c\right)\left(x+6y\right)^2\)

1 tháng 11 2016

a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)

b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

Giải giúp bạn 2 bài tiêu biểu thôi nha

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.

Câu a)

Theo hằng đẳng thức đáng nhớ ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)

\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)

\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)

\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)

Do đó:

\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

Câu b)

\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)

Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)

\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)

Mặt khác xét mẫu số:

\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)

\(=2(x^2+y^2+z^2+xy+yz-xz)\)

Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)

Câu c) Sử dụng kết quả (*) của phần a:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Và mẫu số:

\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)

Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

Câu d)

Xét tử số:

\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)

\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)

\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)

\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)

\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)

Xét mẫu số:

\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)

\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)

\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)

\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)

\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)

\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)

\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)

Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)

Câu e)

Theo phần d ta có:

\(TS=(a-b)(b-c)(a-c)\)

\(MS=ab^2-ac^2-b^3+bc^2\)

\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)

Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)

Bài 2:

a)A= \(6x^2\)\(-11x+3\)

<=>A=\(6x^2\)\(-2x-9x+3\)

<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)

=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)

<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)

=>A=(3x-1)(2x+3)