Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 20042 - 16
= 20042 - 42
= (2004 - 4)(2004 + 4)
= 2000.2008
= 4016000
b) 8922 + 892.216 + 1082
= 8922 + 2.892.108 + 1082
= (892 + 108)2
= 10002
= 1000000
c) 10,2.9,8 - 9,8.0,2 + 10,2.0,2
= 9,8(10,2 - 0,2) + 2,04
= 9,8.10 + 2,04
= 98 + 2,04
= 100,04
d) 362 + 262 - 52.36
= 362 - 2.36.26 + 262
= (36 - 26)2
= 102
= 100
\(3x^2y-6xy^2+3xy\)
\(=3xy\left(x-2y+1\right)\)
\(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(x\left(x-1\right)-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Bài 1 :
\(3x^2y-6xy^2+3xy\)
\(=3xy\left(x-2y+1\right)\)
1.
a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)
b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)
2.
a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)
= (9x-3y)(3x-y)
= 3(3x-y)(3x-y)
= 3(3x-y)^2
b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)
= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)
= \(\left(x^2-9\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)^2\)
Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)
\(=-2x^5-10x^4+x^3\)
b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)
\(=3x^2-5x+2\)
2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)
\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)
\(=\left(3x-y\right)\left(9x-3y\right)\)
\(=3\left(3x-y\right)\left(x-y\right)\)
b ) \(x^3-3x^2-9x+27\)
\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)
\(=x^2\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x^2-9\right)\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
c) \(2x^3-x^2-8x+4\)
\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)
d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)
\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2+x\right)\)
e) \(2x^2-5x+2\)
\(=\left(2x^2-x\right)-\left(4x-2\right)\)
\(=x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
\(\text{a) }x^3y^3+x^2y^2+4\)
\(=x^3y^3+2x^2y^2-x^2y^2+4\)
\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)\)
\(=x^2y^2\left(xy+2\right)-\left(xy+2\right)\left(xy-2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
\( {c)}\)\(x^4+x^3+6x^2+5x+5\)
\(=\left(x^4+x^3+x^2\right)+\left(5x^2+5x+5\right)\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+5\right)\)
\({d)}\)\(x^4-2x^3-12x^2+12x+36\)
\(=\left(x^4-2x^3-6x^2\right)-\left(6x^2-12x-36\right)\)
\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)
\(=\left(x^2-2x-6\right)\left(x^2-6\right)\)
Câu b sai đề thì phải ah
Phân tích đa thức thành nhân tử:
\(6xy+5x-5y-3x^2-3y^2\)
\(=-3x^2+6xy-3y^2+5x-5y\)
\(=-3\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-3\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left[-3\left(x-y\right)+5\right]\)
\(=\left(x-y\right)\left(-3x+3y+5\right)\)
Thực hiện phép tính:
a)\(\left(x^2+x-3\right)\left(x^2-x+3\right)\)
\(=\left[x^2+\left(x-3\right)\right]\left[x^2-\left(x-3\right)\right]\)
\(=\left(x^2\right)^2-\left(x-3\right)^2\)
\(=x^4-\left(x^2-6x+9\right)\)
\(=x^4-x^2+6x-9\)
b)\(\left(5x-1\right)\left(x+3\right)-\left(x-2\right)\left(5x-4\right)\)
\(=\left(5x^2+15x-x-3\right)-\left(5x^2-4x-10x+8\right)\)
\(=5x^2+15x-x-3-5x^2+4x+10x-8\)
\(=28x-11\)