Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
b)
\(x^2-3x^3-x+3\)
\(=x\left(x-1\right)-3\left(x^3-1\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x-3x^2-3x-3\right)\)
\(=\left(x-1\right)\left(-3x^2-2x-3\right)\)
c)
\(x^2-6x+8\)
\(=x^2-2.x.3+9-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
d)
\(4x^4-4x^2y^2-8y^4\)
\(=\left(2x^2\right)^2-2.\left(2x^2\right)y^2+y^2-9y^4\)
\(=\left(2x^2-y\right)^2-\left(3y^2\right)^2\)
\(=\left(2x^2-y-3y^2\right)\left(2x^2-y+3y^2\right)\)
a,nhóm x*5 với x*3,x*2 và 1: (x*5+ x*3) - (x*2+1) =x*3.(x*2+1)-(x*2+1) =....., câu b nhóm x*2 và -3x*3,x và 3, câu c bang (x-3)*2-1 =..., câu d đat 4 ra.
a) \(x^5+x^3-x^2-1=x^3\left(x^2+1\right)-\left(x^2+1\right)=\left(x^3-1\right)\left(x^2+1\right)\)
b) \(x^2-3x^3-x+3=x\left(x-1\right)-3\left(x^3-1\right)=x\left(x-1\right)-3\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left[\left(x-3\right)-\left(x^2+x+1\right)\right]=\left(x-1\right)\left(-x^2-4\right)\)c) \(x^2-6x+8=x^2-6x+9-1=\left(x-3\right)^2-1=\left(x-2\right)\left(x-4\right)\)
d) \(4x^4+4x^2y^2-8y^4=4x^4+4x^2y^2+y^4-9y^4=\left(2x^2+y^2\right)^2-9y^4=\left(2x^2+4y^2\right)\left(2x^2-2y^2\right)=2\left(x^2+2y^2\right)2\left(x^2-y^2\right)=4\left(x^2+2y^2\right)\left(x+y\right)\left(x-y\right)\)
1) \(5xy^2\left(x-1\right)-3y\left(x^2-x\right)\)
\(=5xy^2\left(x-1\right)-3yx\left(x-1\right)\)
\(=\left(x-1\right)\left(5xy^2-3xy\right)\)
\(=xy\left(x-1\right)\left(5y-3\right)\)
\(1)\)\(5xy^2\left(x-1\right)-3y\left(x^2-x\right)\)
\(=\)\(5xy^2\left(x-1\right)-3xy\left(x-1\right)\)
\(=\)\(\left(x-1\right)\left(5xy^2-3xy\right)\)
\(=\)\(xy\left(x-1\right)\left(5y-3\right)\)
\(2)\)\(x\left(x-1\right)+y\left(x-1\right)+\left(x+y\right)^2\)
\(=\)\(\left(x-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\)\(\left(x+y\right)\left(x-1+x+y\right)\)
\(=\)\(\left(x+y\right)\left(2x+y-1\right)\)
\(3)\)\(x\left(x^2-2x\right)-2y\left(x^2-2x\right)+x-2y\)
\(=\)\(\left(x^2-2x\right)\left(x-2y\right)+\left(x-2y\right)\)
\(=\)\(\left(x-2y\right)\left(x^2-2x+1\right)\)
\(=\)\(\left(x-2y\right)\left(x-1\right)^2\)
Chúc bạn học tốt ~
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Ta có:\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3x^4+3x^2+3-x^4-x^2-1-2x^3-2x-2x^2\)
\(=2x^4-2x^3-2x+2=2x^3\left(x-1\right)-2\left(x-1\right)=2\left(x^3-1\right)\left(x-1\right)\)
\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^4+x^2+1\right)-\left(x^4+x^2+1+2x^3+2x^2+2x\right)\)
\(=\left(x^4+x^2+1\right)\left(3-2x^3-2x^2-2x\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x+x^2+x+1\right)\)
\(=3\left(x^2+x+1\right)\left(x^2+2x+1\right)\)
\(=3\left(x^2+x+1\right)\left(x+1\right)^2\)
\(a,x^2\left(1-x^2\right)-4-4x^2\)
\(=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^4+4x^2+4\right)\)
\(=x^2-\left(x^2+2\right)^2\)
\(=\left(2x^2+2\right).\left(-2\right)\)
\(=-4\left(x^2+1\right)\)
\(\left(x^2-1\right)^2-4\left(x^2-1\right)+3=0\)
\(\left(x^2-1\right)\left(x^2-1-4\right)=-3\)
\(\orbr{\begin{cases}x^2-1=-3\\x^2-5=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-2\\x^2=2\end{cases}}\Rightarrow\orbr{\begin{cases}\left(kotontai\right)\\x=\sqrt{2}\end{cases}}\)
vay \(x=\sqrt{2}\)
(X2-1)2-4(X2-1)+3=0
(X²-1)(X²-1-4)=-3
1,
X²-1=--3
X²=2
X=√2=2
2,
X²-5=-3
X²=-3-5
X²=--2
X=√-2=2