Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
a) \(a^3+b^3-c^3+3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ca+bc+c^2-3ab\right)\)
\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+bc+ca\right)\)
b) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)+x^2+xy+zx+x^2-y^2+yz-z^2\right]\)
\(=\left(y+z\right)\left(3x^2+3xy+3yz+3zx\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)++z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(a)a^3+b^3-c^3+3abc=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc+ac\right)\)
Ta có : x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2(x + 1) + x(x + 1)
= (x2 + x) (x + 1)
= x(x + 1)(x + 1)
a: \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3a^2b+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a, x4 - 5x2 + 4
= x4 - 4x2 - x2 + 4
= x2 . (x2 - 4) - (x2 - 4)
= (x2 - 4) . (x2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
a)x4-5x2+4=x4-x2-4x2+4
=(x4-x2)-(4x2-4)
=x2(x2-1)-4(x2-1)
=(x2-1)(x2-4)
a) \(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)=6a^2b+b^3=b\left(6a^2+b^2\right)\)
b) \(\left(x+y\right)^3+\left(x-y\right)^3=\left(x^3+3x^2y+3xy^2+y^3\right)+\left(x^3-3x^2y+3xy^2-y^3\right)=2x^3+6xy^2=2x\left(x^2+3y^2\right)\)
a) \(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)
b) \(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\left(x^2+3y^2\right)\)