K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

a) \(x^2-y^2-5x-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

b) \(5x^3-5x^2y-10x^2+10xy\)

\(=\left(5x^3-5x^2y\right)-\left(10x^2-10xy\right)\)

\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x^2-10x\right)\)

\(=5x\left(x-y\right)\left(x-2\right)\)

c) \(x^3-2x^2-x+2\)

\(=\left(x^3-2x^2\right)-\left(x-2\right)\)

\(=x^2\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-1\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\)

d) \(-y^2+2xy-x^2+3x-3y\)

\(=-\left(y^2-2xy+x^2\right)+\left(3x-3y\right)\)

\(=-\left(y-x\right)^2+3\left(x-y\right)\)

\(=-\left(x-y\right)^2+3\left(x-y\right)\)

\(=\left(x-y\right)\left[-\left(x-y\right)+3\right]\)

\(=\left(x-y\right)\left(-x+y+3\right)\)

g) \(4x^2-8x+3\)

\(=4x^2-6x-2x+3\)

\(=\left(4x^2-6x\right)-\left(2x-3\right)\)

\(=2x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(2x-1\right)\)

h) \(2x^2-5x-7\)

\(=2x^2+2x-7x-7\)

\(=\left(2x^2+2x\right)-\left(7x+7\right)\)

\(=2x\left(x+1\right)-7\left(x+1\right)\)

\(=\left(x+1\right)\left(2x-7\right)\)

k) \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

24 tháng 12 2017
a/ (x-y)(x+y)-5(x+y) <=> (x+y)(x-y+5) b/ 5x(x^2-xy-2x+2y) <=> 5x(x(x-y)-2(x-y)) <=> 5x(x-y)(x-2) c/ x^2(x-2)-(x-2) <=> (x-2)(x^2 - 1) d/x^2-2xy+y^2+3(x-y) <=> (x-y)^2 + 3(x-y) <=> (x-y)(x-y-3) e/ Làm biếng suynghi quá-.- F/ (a-b)^2 + 2(a-b) <=> (a-b)(a-b-2) G/ 4x^2-6x-2x+3 <=> (4x^2-2x)-(6x-3) <=> 2x(2x-1)-3(2x-1) <=> (2x-1)(2x-3) K/ (x^2 - 2)(x^2 + 2) H/ 2x^2-7x+2x-7 <=> 2x(x-1)+7(x-1) <=> (x-1)(2x+7)
8 tháng 9 2018

\(x^2-y^2-5x-5y\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

học tốt

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

1 tháng 8 2018

\(a.x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\) \(b.5x^3-5x^2y-10x^2+10xy=5x^2\left(x-y\right)-10x\left(x-y\right)=5x\left(x-y\right)\left(x-2\right)\) \(c.x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-4y^2\right]=\left(x-1-2y\right)\left(x-1+2y\right)\) \(d.\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt : \(x^2+7x+11=t\) , ta có :

\(\left(t+1\right)\left(t-1\right)-8=t^2-1-8=\left(t-3\right)\left(t+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)

\(e.2x^2-5x-7=2x^2+2x-7x-7=2x\left(x+1\right)-7\left(x+1\right)=\left(x+1\right)\left(2x-7\right)\) \(f.x^2-12x+36=\left(x-6\right)^2=\left(x-6\right)\left(x-6\right)\)

\(g.x^4-5x^2+4=x^4-x^2-4x^2+4=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)\) \(g.a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

11 tháng 10 2020

a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)

b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

c) \(2x^3-x^2-8x+4\)

\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)

d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)

\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2+x\right)\)

e) \(2x^2-5x+2\)

\(=\left(2x^2-x\right)-\left(4x-2\right)\)

\(=x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(x-2\right)\left(2x-1\right)\)

24 tháng 10 2020

a) ax + ay - bx - by = ( ax - bx ) + ( ay - by ) = x( a - b ) + y( a - b ) = ( a - b )( x + y ) < đã sửa >

b) 2x2 - 6xy + 5x - 15y = 2x( x - 3y ) + 5( x - 3y ) = ( x - 3y )( 2x + 5 )

c) ( a + b )2 - 4a2 = ( a + b )2 - ( 2a )2 = ( a + b - 2a )( a + b + 2a ) = ( b - a )( b + 3a )

d) 5a2xy - 10a3x - 15a2x2 = 5a2x( y - 2a - 3x )

e) 3( x - 1 ) + 5x( x - 1 ) = ( x - 1 )( 3 + 5x )

f) 9a2 - 4 = ( 3a )2 - 22 = ( 3a - 2 )( 3a + 2 )

g) 2x3 + 8x4 + 8x = 2x( x + 4x2 + 4 ) 

h) a2 - 4 + 4b - b2 = a2 - ( b2 - 4b + 4 ) = a2 - ( b - 2 )2 = ( a - b + 2 )( a + b - 2 )

i) a2 + 2ab + b2 - 16 = ( a2 + 2ab + b2 ) - 16 = ( a + b )2 - 42 = ( a + b - 4 )( a + b + 4 )

k) x2 + 5x + 4 = x2 + x + 4x + 4 = x( x + 1 ) + 4( x + 1 ) = ( x + 1 )( x + 4 )

l) 2x2 - 3x - 5 = 2x2 + 2x - 5x - 5 = 2x( x + 1 ) - 5( x + 1 ) = ( x + 1 )( 2x - 5 )

m) x3 + 6x2 + 9x = x( x2 + 6x + 9 ) = x( x + 3 )2

27 tháng 9 2020

a, x4 + 2x3 +x2 = x+x+x3 +x2  =(x4+x3 )+(x3 +x) =x3(x +1 ) + x(x+1 ) =(x+1)(x3+x2)

27 tháng 9 2020

a) x4 + 2x3 + x2

= x2(x2 + 2x + 1)

= x2(x + 1)2

= [x(x + 1)]2

= (x2 + x)2

b) 5x3 - 10xy + 5y2 - 20z2

= 5(x3 - 2xy + y2 - 4z2)

c) x2y - xy2 + x3 - y3

= xy(x - y) + (x - y)(x2 + xy + y2)

= (x - y)(x2 + 2xy + y2)

= (x - y)(x + y)2

d) x2 - xy + 4x - 2y  + 4

= (x2 + 4x + 4) - (xy + 2y)

= (x + 2)2 - y(x + 2)

= (x + 2)(x + 2 - y)

d) x2 - x - 6

= x2 - 3x + 2x - 6

= x(x - 3) + 2(x - 3)

= (x + 2)(x - 3)

f) 3x2 - 5x - 8

= 3x2 + 3x - 8x - 8

= 3x(x + 1) - 8(x + 1)

= (3x - 8)(x + 1)

g) x3 + 3x2 + 6x + 4

= (x3 + 3x2 + 3x + 1) + (3x + 3)

= (x + 1)3 + 3(x + 1)

= (x + 1)[(x + 1)2 + 3]

h) 3x3 - 5x2 - 6x + 8

= 3x3 - 3x2 - 2x2 - 6x + 8

= 3x3 - 3x2 - 2x2 + 2x - 8x + 8

= 3x2(x - 1) - 2x(x - 1) - 8(x - 1)

= (3x2 - 2x - 8)(x - 1)