Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
A= -x2+6x+2
=-x2+6x-9+11
=-(x2-6x+9)+11
<=>-(x-3)2+11
Vì -(x-3)2\(\le\)0 nên -(x-3)2+11\(\le\)11
Dấu = xảy ra khi x-3=0
<=>x=3
Vậy GTLN của A là 11 tại x=3
B= -x4+8x2+10
=-x4+8x2-16+26
=-(x4-8x2+16)+26
=-(x2-4)2+26
Vì -(x2-4)2\(\le\)0 nên -(x2-4)2+26\(\le\)26
Dấu = xảy ra khi x2-4=0
<=>x2=4
<=>x=2 hoặc x=-2
Vậy GTLN của B là 26 tại x=2;-2
Đặt x - 2 = y.
Ta có: \(M=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
\(M=y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1+6\left(y^4-2y^2+1\right)\)
\(M=8y^4+8\ge8\)
Dấu "=" xảy ra khi: \(\Leftrightarrow y=0\Leftrightarrow x-2=0\Leftrightarrow x=0\)
\(\Rightarrow GTLN_M=8\), xảy ra khi x = 2
\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)
Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy A max là 7 chỉ khi x=-2
b) \(7-x^2-y^2-2\left(x+y\right)\)
\(=7-x^2-y^2-2x-2y\)
\(=-x^2-2x-1-y^2-2y-1+9\)
\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)
Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)
Vậy ...................
1a) 8xy(8-12x+6x*x-x*x*x)
chú thích x*x là x bình phương
x*x*x là x lập phương
2. a) 3x (x-5)- (x-1)(2+3x)=30
3x*x-15x-2x-3x*x+2+3x=30
14x=28
x=2
b) (x+2)(x-3)-(x-2)(x+5)=0
x*x-3x+2x-6-x*x-5x+2x+10=0
2x=-4
x=-2
còn mấy bài còn lại mình không biết
Ta có \(\left(x+10\right)^4+\left(x-3\right)^4=\left[\left(x+10\right)^2\right]^2+\left[\left(3-x\right)^2\right]^2\)
\(\ge\dfrac{\left[\left(x+10\right)^2+\left(3-x\right)^2\right]^2}{2}\) \(\ge\dfrac{\left[\dfrac{\left(x+10+3-x\right)^2}{2}\right]^2}{2}\) \(=\dfrac{\left(\dfrac{13^2}{2}\right)^2}{2}\)\(=\dfrac{28561}{8}\) (áp dụng 2 lần bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))
Suy ra \(P\le2000-\dfrac{28561}{8}=-\dfrac{12561}{8}\).
Dấu "=" xảy ra \(\Leftrightarrow x+10=3-x\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy \(maxP=-\dfrac{12561}{8}\), max xảy ra khi \(x=-\dfrac{7}{2}\)