Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\dfrac{1}{2}\times1\dfrac{1}{3}\times1\dfrac{1}{4}\times...\times1\dfrac{1}{2023}\times1\dfrac{1}{2024}\)
\(=\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{4}\right)\times...\times\left(1+\dfrac{1}{2023}\right)\times\left(1+\dfrac{1}{2024}\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times...\times\dfrac{2024}{2023}\times\dfrac{2025}{2024}\)
\(=\dfrac{3\times4\times5\times...\times2024\times2025}{2\times3\times4\times...\times2023\times2024}\)
\(=\dfrac{2025}{2}\)
\(=1012,5\)
Đặt A = 1 + 2 + 3 + 4 + ... + 2023
Tổng có 2023 - 1 + 1 số hạng
A = (2023 + 1) × 2023 : 2
= 2047276
-----------------------
Đặt B = 20 + 21 + 22 + ... + 2024
Tổng có: 2024 - 20 + 1 = 2005 số hạng
B = (2024 + 20) × 2005 : 2
= 2049110
------------------------
Đặt C = 2 + 4 + 6 + ... + 2024
Tổng có (2024 - 2) : 2 + 1 = 1012 số hạng
C = (2024 + 2) × 1012 : 2
= 1025156
------------------------
Đặt D = 1 + 2 + 4 + 8 + 16 + ... + 8192
2 × D = 2 + 4 + 8 + 16 + 32 + ... + 16384
2 × D - D = (2 + 4 + 8 + 16 + 32 + ... + 16384) - (1 + 2 + 4 + 8 + 16 + ... + 8192)
= 16384 - 1
= 16383
Vậy D = 16383
\(a,A=1+2+3+4+5..+2023\)
Số số hạng:
\(\left(2023-1\right):1+1=2023\)
Tổng :
\(\dfrac{\left(2023+1\right).2023}{2}=2047276\)
\(b,20+21+22+..+2024\)
Số số hạng:
\(\left(2024-20\right):1+1=2005\)
Tổng:
\(\dfrac{\left(2024+20\right).2005}{2}=2049110\)
\(c,2+4+6+..+2024\)
Số số hạng:
\(\left(2024-2\right):2+1=1012\)
Tổng:
\(\dfrac{\left(2024+2\right).1012}{2}=1025156\)
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2023}{2024}\\ =\dfrac{1\times2\times3\times...\times2023}{2\times3\times4\times...\times2024}\\ =\dfrac{1}{2024}\)
a) \(\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{5}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)=\frac{1}{2}\)
b) \(\frac{3}{16}\times\frac{7}{5}+\frac{3}{5}\times\frac{9}{16}=\frac{21}{80}+\frac{27}{80}=\frac{48}{80}=\frac{3}{5}\)
c) \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2020\times2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
d) \(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{2021\times2023}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{2021\times2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{2023}\right)=\frac{1}{2}\times\frac{2022}{2023}=\frac{1011}{2023}\)
e) \(\frac{3}{2}\times\frac{1}{7}\times\frac{5}{4}+\frac{15}{2}\times\frac{6}{7}\times\frac{1}{4}==\frac{15}{56}+\frac{80}{56}=\frac{95}{56}\)
\(\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times...\times\left(1+\dfrac{1}{2023}\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times...\times\dfrac{2024}{2023}\)
\(=2\times...\times\dfrac{2024}{2023}\)
\(=\dfrac{2024}{2}\)
\(=1012\)
1+2+3+...+2023=\(\dfrac{\left(2023-1\right)+1\cdot\left(1+2023\right)}{2}\)=2047276.
Khoảng cách 2 số hạng kề nhau:
3-2=1
Số lượng số hạng của dãy:
(2023-1):1+1=2023
Tổng dãy số trên:
(2023 +1): 2 x 2023= 2047276
Đ.số: 2047276
sorry cao lộc, đến lúc bạn trả lời thì mình có đáp án rồi
a) 2/3 : 3/5 × 5/7 : 2/3
= 2/3 × 5/3 × 5/7 × 3/2
= 25/21
b) 1 1/2 × 1 1/3 × 1 1/18 × 1 1/15 × 1 1/24 × 1 1/35
= 3/2 × 4/3 × 19/18 × 16/15 × 25/24 × 36/35
= 2 × 152/35 × 15/14
= 304/35 × 15/14
= 152/7
Lời giải:
$P=\frac{1}{\frac{2\times 3}{2}}+\frac{1}{\frac{3\times 4}{2}}+\frac{1}{\frac{4\times 5}{2}}+....+\frac{1}{\frac{2023\times 2024}{2}}$
$=2\times (\frac{1}{2\times 3}+\frac{1}{3\times 4}+\frac{1}{4\times 5}+...+\frac{1}{2023\times 2024})$
$=2\times (\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+...+\frac{2024-2023}{2023\times 2024})$
$=2\times (\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2023}-\frac{1}{2024})$
$=2\times (\frac{1}{2}-\frac{1}{2024})=\frac{1011}{1012}$