K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét \(\Delta OBM\) và \(\Delta OAM\) có:

\(OA = OB( = R)\)

OM chung

AM=BM (do hai đường tròn tâm A và B có bán kính bằng nhau)

\( \Rightarrow \)\(\Delta OBM\) = \(\Delta OAM\)(c.c.c)

\( \Rightarrow \) \(\widehat {MOB} = \widehat {MOA}\) (hai góc tương ứng)

Mà tia OM nằm trong góc xOy

Vậy OM là tia phân giác của góc xOy.

19 tháng 9 2023

Ta có: AM = bán kính đường tròn tâm A

BM = bán kính đường tròn tâm B

Mà 2 đường tròn này có bán kính bằng nhau

Do đó, AM = BM

Xét \(\Delta \)OAM và \(\Delta \)OBM có:

OA = OB( = bán kính đường tròn tâm O)

MA = MB (cmt)

OM chung

\( \Rightarrow \) \(\Delta \)OAM = \(\Delta \)OBM ( c.c.c)

\( \Rightarrow \) \(\widehat {AOM} = \widehat {BOM}\) ( 2 góc tương ứng)

Mà OM nằm giữa 2 tia OA và OB

\( \Rightarrow \) OM là tia phân giác của góc AOB.

5 tháng 9 2019

Xin lỗi bạn nhé mình không vẽ hai hình tròn đè lên nhau được nha

Điểm I nằm trên đường tròn (B, BO) nên BI = BO.

Theo giả thiết AO = BO nên:

AI =BI = AO =BO.

Hai tamm giác OAI và OBI  có ba cạnh bằng nhau từng đôi một: OA = OB, AI = BI và OI chung,nên chúng bằng nhau. Ta suy ra \(\widehat{AOI}=\widehat{BOI}\)nghĩa là tia OI là tia phân giác của góc xOy.

19 tháng 3 2019

 

Giải bài 20 trang 115 Toán 7 Tập 1 | Giải bài tập Toán 7

Nối BC, AC

ΔOBC và ΔOAC có:

    OB = OA (bán kính)

    AC = BC (gt)

    OC cạnh chung

Nên ΔOBC = ΔOAC (c.c.c)

Giải bài 20 trang 115 Toán 7 Tập 1 | Giải bài tập Toán 7

nên OC là tia phân giác của góc xOy.

25 tháng 11 2015

a) Ta có đường tròn tâm A có bán kính bằng đưởng tròn tâm B. Vậy bán kính đường tròn tâm A = bán kính đường tròn tâm B => AI=BI

Xét tam giác AOI và tam giác BOI, ta có:

OA=OB(gt)

AI=BI

OI: cạnh ching

Do đó tam giác AOI = tam giác BOI

=> Góc AOI = góc BOI

Vậy OI là tia phân giác cảu góc xOy (đpcm)