Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)
Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)
Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)
Áp dụng BĐT , ta có :
\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)
\(\Rightarrow M< 100\)
\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{2}{\sqrt{n+1}+\sqrt{n}}< \frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)
\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)
Cách lớp 7 nà:)
\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_
\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)
Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)
Vậy ta có đpcm
Gắt chưa??? :>> Dương Bá Gia Bảo
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)