Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
v xuôi dòng bằng v thuyền +v dòng nước.
v ngược dòng bằng v thuyền-v dòng nước.
câu b hình như là lấy (thời gian cano đi từ B-A) - (thời gian cano đi từ B-chỗ sửa)+24'= thời gian đi từ chỗ sửa đến A
Tìm quãng đường từ chỗ sửa đến A(24-7,2).Vận tốc cần đi bằng quãng đường(24-7,2):thời gian đi từ chỗ sửa đến A.
Ý kiến riêng thôi.Chắc giờ bạn cũng đã nhờ được người giải giùm,bài có sai chỗ nào thì nhắc mình để mình xem lại nhé.
Gọi vận tốc dự định: v, vận tốc tăng thêm v'.
Gọi s là chiều dài của quãng đường.
Theo bài ra ta có: \(t=\dfrac{s}{t}=4\Rightarrow s=4v\left(1\right)\)
Lại có \(t=t_1+t_2+t_3=\dfrac{s}{2v}+\dfrac{s}{2\left(v+v'\right)}+\dfrac{1}{3}=4\left(h\right)\left(2\right)\)
Thay (1) vào (2), ta có: \(\dfrac{4v}{2v}+\dfrac{4v}{2v+6}+\dfrac{1}{3}=4\)
Giải phương trình trên ta có: \(v=15\left(\dfrac{km}{h}\right)\)
\(\Rightarrow s=4v=4.15=60\left(km\right)\)
b, làm nốt nhé :D ko hỉu tim mk sau :D
a) Gọi độ dài quãng đường AB là S
=> Dự định = 4v
Nhưng trên thực tế: Nửa quãng đường đầu S = v.t1 , nửa quãng đường sau S = (v + 3) . t2
t1 + t2 = 4 - 1/3 = 11/3
Mà t1 = t2 = 2 (vì thời gian này bằng nửa thời gian dự định, đi nửa quãng đường đầu với vận tốc không đổi nên thời gian là một nửa)
=> t2 = 5/3
=> 4v = 2v + (v + 3). 5/3 => v = 15 (km/giờ) => S = 60 km
b)Đi 1h, s1 = 15km
Thời gian còn lại là
4giờ -1 giờ -0,5 giờ = 2,5 (giờ)
=> Quãng đường còn lại 45km
=> Vận tốc là :
45 : 2,5 = 18 (km/giờ)
ta có:
t=\(\frac{S}{v}\)
t'=\(\frac{S}{2v}+\frac{S}{2\left(v+3\right)}\)
do người đó đến sớm hơn dự định 20 phút nên:
t-t'=\(\frac{1}{3}\)
\(\Leftrightarrow\frac{S}{v}-\frac{S}{2v}-\frac{S}{2\left(v+3\right)}=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{1}{v}-\frac{1}{2v}-\frac{1}{2\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{2v+6-\left(v+3\right)-v}{2v\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{3}{2v\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Rightarrow S=\frac{2v^2+6v}{9}\left(1\right)\)
ta lại có:
\(t=\frac{S}{v}\Leftrightarrow\frac{S}{v}=4\Leftrightarrow S=4v\left(2\right)\)
thế (2) vào (1) ta có:
\(4v=\frac{2v^2+6v}{9}\)
\(\Leftrightarrow2v^2+6v=36v\)
\(\Rightarrow2v^2-30v=0\)
giải phương trình ta có:
v=15km hoặc v=0km(loại)
vậy S=60km
b)sau 1h người đó đi được:
v*1=15km
đoạn đường người đó còn phải đi là:
60-15=45km
do người đó nghỉ 30 phút nên người đó phải đi đoạn còn lại trong:
4-1-0.5=2.5h
vận tốc người đó phải đi lúc sau là:
45/2.5=18km/h
Gọi t1 là thời gian dự định,
AC là quãng đường người đó đi được trong 1/4 thời gian dự định
Ta có: 3 giờ 20 phút=10/3 giờ
Quãng đường AB=v.t1=10v/3 (1)
Quãng đường AC= \(\frac{10v}{3.4}=\frac{5v}{6}\)(2)
Quãng đường BC= (\(\frac{10}{3}-\frac{5}{6}-\frac{1}{4}\)).(v+4)= \(\frac{9v+36}{4}\)(3)
Từ (1), (2), (3) ta được: \(\frac{5v}{6}+\frac{9v+36}{4}=\frac{10v}{3}\)→v=36km/h
Gọi G là vị trí người đó gặp người quen, A là nhà, B là trường.
v1,v2 lần lượt là vận tốc đi bộ, đi oto
AGB
Thời gian người đó đi bộ từ nhà đến trường:
t1=\(\dfrac{AB}{v_1}\)
Thời gian người đó đi bộ sau đó đi oto đến trường là:
t2=\(\dfrac{AG}{v_1}\)+\(\dfrac{AB-AG}{v_2}\)
Theo đề ta có: t1-\(\dfrac{15}{60}\)=t2
\(\Leftrightarrow\) \(\dfrac{AB}{v_1}\)-0,25=\(\dfrac{AG}{v_1}\)+\(\dfrac{AB-AG}{v_2}\)
\(\Leftrightarrow\)\(\dfrac{AB-AG}{v_1}-\dfrac{AB-AG}{v_2}=0,25\)
\(\Leftrightarrow\left(AB-AG\right).\left(\dfrac{1}{8}-\dfrac{1}{30}\right)=0,25\)
\(\Rightarrow\)AB-AG=\(\dfrac{30}{11}\)km
...
Đề có bị thiếu dữ kiện không ạ? =='
10m/s=36km/h
ta có:
do cả hai lần cùng đi một quãng đường nên:
S=S1
\(\Leftrightarrow vt=v_1t_1\)
\(\Leftrightarrow36t=40t_1\)
mà t=t1+0,5
\(\Rightarrow36\left(t_1+0,5\right)=40t_1\)
\(\Rightarrow t_1=4,5h\)
\(\Rightarrow S=180km\)
a,v=10m/s=36km/h
Vận tốc của người này khi tăng thêm 4 km/h là :
V=v+4=36+4=40(km/h)
Thời gian dự định của người này là :
t1=\(\frac{AB}{v}=\frac{AB}{36}\)(h)
Thời gian người này đi từ A đến B sau khi tăng vận tốc là :
t2=\(\frac{AB}{V}=\frac{AB}{40}\)(h)
Theo đề ta có : t1-t2=30 phút =0,5h
\(\Rightarrow\frac{AB}{36}-\frac{AB}{40}=0,5\)
\(\Rightarrow AB\left(\frac{1}{36}-\frac{1}{40}\right)=0,5\)
\(\Rightarrow\)AB=180(km)
Vậy thời gian dự định là : t1=\(\frac{180}{36}\)=5(h)
b,1/4 quãng đường dài : \(\frac{1}{4}\)AB=\(\frac{1}{4}\).180=45(km)
Thời gian đi 1/4 quãng đường là :
t3=\(\frac{45}{36}=1,25\)(h)
45 phút =0,75h
Thời gian còn lại để người này đi đến B đúng h là :
T=t1-t3-tnghỉ=5-1,25-0,75=3(h)
quãng đường còn lại là :
AB-1/4AB=3/4AB=3/4.180=135(km)
Vận tốc người này phải đi đến B đùn thời gian dự định là L:
v1=\(\frac{135}{T}=\frac{135}{3}=45\)(km/h)
ta có:
vận tốc dự định của người đó là:
\(v=\frac{S}{t}=40\) km/h
thời gian người đó đi hết 3/5 quãng đường là:
\(t_1=\frac{3S}{5v}=1,5h\)
thời gian còn lại của người đó là:
t2=t-t1-0,2=0,8h
quãng đường người đó còn phải đi là:
S'=2/5.S=40km
vận tốc người đó lúc sau để kịp giờ là:
\(v'=\frac{S'}{t'}=50\)
đến B đúng dự định thì ta phải đi qua cầu Đông hà nối liền Bắc Giang và qua đường sắt Cao Bằng rồi đến Lạng Sơn. Vậy thì vận tốc bạn hỏi bố của bạn nếu thực hành. Chúc bạn thành công trong cuộc sống. Bước tới đèo ngang bóng xế tà. Cỏ cây chen lá, lá xen hoa. Lom khom dưới núi tiều vài chú, lác đác bên sông chợ mấy nhà. We don't don't anymore.
Quãng đường người đó đi được lúc xe chưa hỏng là: \(s_1=\dfrac{1}{3}s\)
Để đến nơi đúng thời gian, ta có phương trình:
\(t=\dfrac{\dfrac{1}{3}s}{v_1}+\dfrac{1}{2}t+\dfrac{\dfrac{2}{3}s}{v_2}\)
chịu ahihi
10m/s = 36km/h
30p = 0,5h
Nếu tăng thêm 4km/h nữa thì vận tốc của người đó là:
v2 = v1 + vt = 36 + 4 = 40 (km/h)
Nếu tăng thêm 4km/h nữa thì thời gian người đó đi hết quãng đường là:
t2 = t1 - tt = t1 - 0,5
Quãng đường người đó phải đi là:
s = v1t1 = 36t1
Mà s = v2t2 = 40(t1 - 0,5) = 40t1 - 20
=> 40t1 - 20 = 36t1
=> t1 = 5 (h)
Quãng đường người đó phải đi là:
s = v1t1 = 36 . 5 = 180 (km)
Vậy...
b) 45p = 0,75h
Quãng đường người đó đã đi là:
\(s_1=\dfrac{1}{4}s=\dfrac{1}{4}\cdot180=45\left(km\right)\)
Quãng đường người đó còn phải đi là:
s2 = s - s1 = 180 - 45 = 135 (km)
Thời gian người đó đi hết 45km là:
\(t_3=\dfrac{s_1}{v_1}=\dfrac{45}{36}=1,25\left(h\right)\)
Thời gian người đó đã tiêu tốn là:
\(t_4=t_3+t_n=1,25+0,75=2\left(h\right)\)
Thời gian người đó còn lại là:
t5 = t1 - t4 = 5 - 2 = 3 (h)
Để đúng thời gian dự định, trên quãng đường còn lại người đó phải đi với vận tốc là:
\(v_3=\dfrac{s_2}{t_5}=\dfrac{135}{3}=45\left(km/h\right)\)
Vậy...
a,Đổi:\(10\)m/s\(=36\)km/h
\(30'=0,5h\)
Gọi t là thời gian dự định đi trong \(36\)km/h.
\(t_1\) là thời gian đi quãng đường S khi tăng vận tốc thêm \(4\)km/h.
Ta có:
\(t=\dfrac{S}{V_1}=\dfrac{S}{36}\)
\(t_1=\dfrac{S}{V_2}=\dfrac{S}{V_1+4}=\dfrac{S}{40}\)
Lại có:
\(t-t_1=\dfrac{S}{36}-\dfrac{S}{40}=0,5\)
\(\Leftrightarrow\dfrac{S}{360}=0,5\)
\(\Leftrightarrow S=180\left(km\right)\)
\(\Rightarrow t=\dfrac{S}{V_1}=\dfrac{180}{36}=5\left(h\right)\)
Vậy...
b, Thời gian để xe đi \(\dfrac{1}{4}\) quãng đường là:
\(t_2=\dfrac{\dfrac{S}{4}}{36}=\dfrac{\dfrac{180}{4}}{36}=1,25\left(h\right)\)
Đổi:\(45'=0,75h\)
Thời gian còn lại để người đó đi cho kịp thời gian dự định là:
\(t_3=t-t_2-0,75=5-1,25-0,75=3\left(h\right)\)
Vận tốc người đó cần đi để kịp thời gian dự định là:
\(V_2=\dfrac{S-\dfrac{S}{4}}{t_2}=\dfrac{\dfrac{3S}{4}}{t_2}=\dfrac{\dfrac{3.180}{4}}{3}=45\)(km/h)
Vậy...