Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu là kết quả của việc chọn ngẫu nhiên 2 chiếc giày trong số 8 chiếc giày.
A: “ Chọn được 2 chiếc tạo thành một đôi”
⇒ n(A) = 4 (Vì có 4 đôi).
Phép thử T được xét là: "Lấy ngẫu nhiên 2 chiếc giày từ 4 đôi giày có cỡ khác nhau".
Mỗi một kết quả có thể là một tổ hợp chập 2 của 8 chiếc giày. Do đó số các kết quả có thể có thể có của phép thử T là n(Ω) = C28 = = 28.
Vì lấy ngẫu nhiên, nên các kết quả có thể có của phép thử T là đồng khả năng. Gọi A là biến cố: "Lấy được hai chiếc giày tạo thành một đôi". Mỗi một kết quả có thể có thuận lợi cho A là một đôi giày trong 4 đôi giày đã cho. Do đó số các kết quả có thể có thuận lợi cho A là n(A) = 4. Suy ra P(A) = = .
ta có : \(n\left(\Omega\right)=C^6_{20}=38760\)
a) Gọi A : " chọn ra 6 chiếc gang tay mà không tạo thành đôi nào "
=> n(A) = \(\left(C^6_{10}+C^5_{10}.C^1_5+C^4_{10}.C^2_6+C^3_{10}.C^3_7+C^2_{10}.C^4_8+C^1_{10}.C^5_9+C^6_{10}\right)=13440\)
=> P(A)= 13440 / 38760 = 112/323
" Lưu ý : ta phải bân biệt gang tay trái và gang tay phải ... tự đọc rồi tìm hiểu xem tại sao lại vậy .. ko hiểu thì hỏi lại t giải thích cho :) "
b) Gọi B :" 6 chiếc lấy ra trong đó có 1 đôi "
=> n(B) = \(C^1_{10}.C^4_9+C^1_{10}.C^3_9.C^1_6+C^1_{10}.C^2_9.C^2_7+C^1_{10}.C^1_9.C^3_8+C^1_{10}.C^4_9=20160\)
=>P(A) = 20160 / 38760 =168/323
Đáp án C.
Số cách lập số có 5 chữ số có 3 và 4 đứng cạnh nhau là 2(4.4.3.2) = 192 cách.
Số cách lập số có 6 chứ số đôi một khác nhau từ A là 5.5.4.3.2=600 cách
Suy ra xác suất cần tìm là 192 600 = 8 25
Đáp án B
Khi đó
- Số cách chọn chữ số α có 5 cách chọn vì α ≠ 0 .
- Số cách chọn chữ số b có 5 cách chọn vì b ≠ α .
- Số cách chọn chữ số c có cách chọn vì c ≠ α và c ≠ b .
Do đó tập S có 5.5.4 = 100 phần tử.
Không gian mẫu là chọn ngẫu nhiên1 số từ tập S .
Suy ra số phần tử của không gian mẫu là Ω = C 100 1 = 100 .
Gọi X là biến cố "Số được chọn có chữ số cuối gấp đôi chữ số đầu". Khi đó ta có các bộ số là 1 b 2 hoặc 2 b 4 thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả số thỏa yêu cầu.
Suy ra số phần tử của biến cố X là Ω X = 8 .
Vậy xác suất cần tính P ( X ) = Ω X Ω = 8 100 = 2 25 .
\(n\left(\Omega\right)=C^4_{10}=210\)
A: "Không chọn được hai chiếc nào tạo thành một đôi".
\(\overline{A}\): "Chọn được ít nhất hai chiếc tạo thành một đôi".
\(n\left(\overline{A}\right)=C^1_5\cdot C_8^2=140\).
\(n\left(A\right)=210-140=70\).
\(P\left(A\right)=\dfrac{70}{210}=\dfrac{1}{3}\).