Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp giải:
Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố
Lời giải:
Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có C 20 6 = 38760 cách ⇒ n ( Ω ) = 38760
Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:
TH1. 6 sản phẩm lấy ra 0 có phế phẩm nào => có C 16 6 = 8008 cách
TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có C 16 5 . C 4 1 = 17472 cách
Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8008 + 17472 = 25480
Vậy xác suất cần tính là
Số khả năng chọn 5 sản phẩm trong 10 sản phẩm là n(Ω) =C105=252
b. Gọi B là biến cố:” trong 5 sản phẩm được chọn có ít nhất 1 phế phẩm” thì :
Chọn C
Chọn D
Ta có:
Gọi A là biến cố lấy ra 3 sản phẩm trong đó có ít nhất một sản phẩm tốt.
=> A ¯ là biến cố lấy ra 3 sản phẩm không có sản phẩm tốt và
Vậy
Đáp án B
Gọi A là biến cố: “ 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt”
Khi đó là biến cố :”3 sản phẩm lấy ra không có sản phẩm nào tốt”
Ta có:
Suy ra
Số khả năng chọn 5 sản phẩm trong 10 sản phẩm là n(Ω) =C105=252
c.Gọi C là biến cố:” trong 5 sản phẩm được chọn có đúng một phế phẩm”
n(c)= C21. C84=140 → P( C) =140/252=5/9
Chọn B
Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^6_{20}\)
a) Gọi A là biến cố: "Tất cả đều là chính phẩm."
Ta thấy \(\left|A\right|=C^6_{15}\)
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{ \left|\Omega\right|}=\dfrac{C^6_{15}}{C^6_{20}}=\dfrac{1001}{7752}\)
b) Gọi B là biến cố: "Tất cả đều là phế phẩm."
Rõ ràng \(\left|B\right|=0\) (vì chỉ có 5 phế phẩm nhưng ta chọn tới 6 sản phẩm nên không thể có chuyện cả 6 sản phẩm được chọn đều là phế phẩm) \(\Rightarrow P\left(B\right)=0\)
c) Gọi C là biến cố: "Có ít nhất 3 chính phẩm."
\(P_i\) là biến cố: "Có đúng \(i\) chính phẩm." \(\left(3\le i\le6\right)\)
Do \(P_i\) đôi một rời nhau và \(C=\cup^6_{i=3}P_i\) nên \(\left|C\right|=\sum\limits^6_{i=3}\left|P_i\right|\)
Ta thấy \(\left|P_i\right|=C^i_{15}.C^{6-i}_5\) \(\Rightarrow\sum\limits^6_{i=3}\left|P_i\right|=\sum\limits^6_{i=3}C^i_{15}.C^{6-i}_5=38220\)
hay \(\left|C\right|=38220\)
Từ đó \(P\left(C\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{38220}{C^6_{20}}=\dfrac{637}{646}\)