Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có 2 khả năng có thể xảy ra đối với mặt xuất hiện của đồng xu là: Sấp (S) và Ngửa (N).
Vậy \(A = \left\{ {S;\,N} \right\}\).
b) Biến cố B: “Mặt xuất hiện của đồng xu là mặt N”
Tập hợp M gồm các kết quả xó thể xảy ra đối với biến cố B là: \(M = \left\{ N \right\}\).
Phần tử N là kết quả thuận lợi cho biến cố B.
c) Số các kết quả thuận lợi của B là: 1
Số phần tử của tập hợp A là: 2
Tỉ số các kết quả thuận lợi cho biến cố B và phần tử của tập hợp A là: \(\frac{1}{2}\)
Vì 3 viên bi xanh, 4 viên bi đỏ và 5 viên b vàng có kích thước và khối lượng như nhau nên 12 kết quả của phép thử có khả năng xảy ra bằng nhau.
- Biến cố \(A\) xảy ra khi ta lấy được viên bi màu xanh nên có 3 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:
\(P\left( A \right) = \frac{3}{{12}} = \frac{1}{4}\).
- Biến cố \(B\) xảy ra khi ta lấy được viên bi không có màu vàng nên viên bi lấy được có thể có màu xanh hoặc màu đỏ. Do đó, có 7 kết quả thuận lợi cho \(B\). Xác suất của biến có \(B\) là:
\(P\left( B \right) = \frac{7}{{12}}\).
a) Các trường hợp có thể xảy ra đối với số ghi ở hình quạt mà mũi tên chỉ vào đĩa khi dừng lại là: mũi tên chỉ số 1, mũi tên chỉ số 2, mũi tên chỉ số 3, mũi tên chỉ số 4, mũi tên chỉ số 5, mũi tên chỉ số 6, mũi tên chỉ số 7, mũi tên chỉ số 8.
\(C = \left\{ {1;2;3;4;5;6;7;8} \right\}\)
b) Các kết quả có thể xảy ra đối với biến cố D: “Mũi tên chỉ vào hình quạt ghi số lẻ” là: mũi tên chỉ số 1, mũi tên chỉ số 3, mũi tên chỉ số 5, mũi tên chỉ số 7.
\(D = \left\{ {1;3;5;7} \right\}\)
Các phần tử 1; 3; 5; 7 được gọi là kết quả thuận lợi cho biến cố D.
c) Số kết quả thuận lợi cho biến cố D là: 4
Số phần tử của tập hợp C là: 8
Tỉ số của số các kết quả thuận lợi cho biến cố D và số phần tử của tập hợp C là: \(\frac{4}{8} = \frac{1}{2}\) mũi tên
a) Cách lấy 2 viên bi trong túi là:
Xanh – đỏ; Xanh – trắng; Xanh – vàng; Đỏ - trắng; Đỏ - vàng; Trắng – vàng.
Có 6 cách lấy hai biên bi từ trong túi.
Biến cố \(A\) xảy ra khi 2 viên bi lấy ra có 1 viên bi màu đỏ
Có 3 kết quả thuận lợi cho biến cố \(A\) là Xanh – đỏ; Đỏ - trắng; Đỏ - vàng
Xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{1}{2}\).
b) Biến cố \(B\) xảy ra khi 2 viên bi lấy ra đều không có màu trắng
Có 3 kết quả thuận lợi cho \(B\) là : Xanh – đỏ; Xanh – vàng; Đỏ - vàng.
Xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{1}{2}\).
a) Vì Mai lấy tất cả 80 lần mà có 24 lần bi trắng nên số lần lấy được bi đen là 80 – 24 = 56 (lần).
Xác xuất thực nghiệm của biến cố “Lấy được viên bi màu đen” là \(\frac{{56}}{{80}} = \frac{7}{{10}}\).
b) Gọi số viên bi đen trong hộp là \(N\)
Xác suất xuất hiện biến cố lấy được viên bi đen khi thực hiện phép thử là \(\frac{N}{{10}}\).
Do số lần lấy bi là lớn nên \(\frac{N}{{10}} \approx \frac{7}{{10}}\), tức là \(N \approx 10.7:10 = 7\) (viên bi)
Số bi trắng có trong hộp khoảng 10 – 7 = 3 (viên bi)
Vậy số viên ni trắng trong hộp khoảng 3 viên bi.
Gọi số viên bi đỏ trong túi là \(N\). Khi đó tổng số viên bi trong túi là \(N + 9\).
Xác suất lí thuyết của biến cố lấy được viên bi đỏ là \(\frac{N}{{N + 9}}\)
Vì sau 100 lần lấy bi thì có 40 lần được bi đỏ nên xác suất thực nghiệm là \(\frac{{40}}{{100}} = \frac{2}{5}\)
Vì số lần lấy bi là lớn nên
\(\frac{N}{{N + 9}} \approx \frac{2}{5} \Leftrightarrow 2.\left( {N + 9} \right) \approx 5N \Leftrightarrow 5N \approx 2N + 18 \Leftrightarrow 3N \approx 18 \Leftrightarrow N \approx 6\)
Vậy trong túi có khoảng 6 viên bi đỏ.
Đây chắc chắn là kiến thức lớp 8 chứ, nó không khác gì bài lớp 4 của bọn tui cả
đáp án là
lấy 25 + 20 +1 = 46 viên
vì nhỡ bốc thế quái nào trúng 25 viên đầu tiên đều là màu đỏ, 20 viên tiếp theo lại toàn xanh ( cái đó là thánh đen rồi, không pk lần lượt có thể trong 45 viên đầu tiên đều ko có màu vàng thì sao ) vì vậy cần công thêm 1 viên bi nữa thì hết bi xanh và đỏ rồi.
a) E = {Lúa, Ngô, Hoa hồng, Hoa hướng dương, Trâu, Bò, Voi, Hổ, Báo, Sư tử}
b) G = {Trâu, Bò, Voi, Hổ, Báo, Sư tử}
Các phần tử Trâu, Bò, Voi, Hổ, Báo, Sư tử được gọi là các kết quả thuận lợi của biến cố G.
c) Số kết quả thuận lợi của biến cố G là: 6
Số phần tử của tập hợp E là: 10
Tỉ số của số các kết quả thuận lợi cho biến cố G và số phần tử của tập hợp E là: \(\frac{6}{{10}} = 0,6\)