K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
Gọi dư khi chia $f(x)$ cho $(x-1)(x+2)$ là $ax+b$ (dư phải có bậc nhỏ hơn đa thức chia) 

Khi đó:
$f(x)=5x^2(x-1)(x+2)+ax+b$

Ta có:
$f(1)=a+b=4\Rightarrow a=4-b$

$f(-2)=-2a+b=1$

Thay $a=4-b$ thì: $-2(4-b)+b=1$

$\Rightarrow -8+2b+b=1$

$\Rightarrow 3b=9\Rightarrow b=3$

$a=4-b=4-3=1$

Vậy $f(x)=5x^2(x-1)(x+2)+x+3$

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Theo đề thì bạn chỉ tính được tổng $a+b$ thôi chứ sẽ không tính được cụ thể giá trị $a,b$.

28 tháng 5 2015

f(x) chia hết cho x-2 nên f(x) = (x-2).g(x)

\(\Rightarrow f\left(2\right)=8+4a+2b+c=0\)

\(f\left(x\right)=\left(x^2-1\right).h\left(x\right)+2x\)

\(\Rightarrow f\left(1\right)=\left(1^2-1\right).h\left(x\right)+2=2=1+a+b+c\)

\(f\left(-1\right)=-2=1+a-b+c\)

Giải hệ 3 phương trình tìm được a,b,c

16 tháng 12 2016

Do bậc của đa thức chia là 2 nên da thức dư có bậc cao nhất là 1 hay

f(x) = (x2 - 5x + 6)(1 - x2) + ax + b

f(x) chia cho x - 2 dư 2 nên áp dụng định lý bê du ta có khi x = 2 thì f(x) = 2

 2a + b = 2

Tương tự chia cho x - 3 dư 7

=> f(3) = 3a + b = 7

=> a = 5, b = - 8

Thế vô là tìm được f(x)