Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2y-3x = 5
x/y = 3/5 => x = 3y/5
2y - 3.3y/5 =5
y = 25 = hsk
x = 15 = hsg
chỉ là t/c của tlt
x+y+z = 225
x/2 = y/3 = z/4
k = 225/9 = 25
x = 50kg
y = 75kg
z = 100kg
học toán là phải suy nghĩ
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy
Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)
Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108
Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên
\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)
Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m
Gọi độ dài ba tấm vải lúc đầu là x, y, z (0<x,y,z <210)
Theo bài: sau khi bán \(\dfrac{1}{7}\) tấm vải thứ nhất, \(\dfrac{2}{11}\) tấm vải thứ hai và \(\dfrac{1}{3}\)tấm vải thứ ba thì chiều dài ba tấm bằng nhau
\(\Rightarrow\dfrac{6x}{7}=\dfrac{9y}{11}=\dfrac{2z}{3}\)
\(\Leftrightarrow\dfrac{18x}{21}=\dfrac{18y}{22}=\dfrac{18z}{27}=\dfrac{18\left(x+y+z\right)}{21+22+27}=\dfrac{18.210}{70}=54\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{54.21}{18}=63\\y=66\\z=81\end{matrix}\right.\)(tm 0 < x,y,z < 210)
Vậy độ dài 3 tấm vải lần lượt là 63, 66 và 81 m
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
o(〃^▽^〃)o
Gọi khối lượng mỗi bao ban đầu là a,b,c.
Số lượng còn lại trong mỗi bao khi đã bán là: a/2; b/3 và c/4
Theo bài ra có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{225}{9}=25\)(Theo tính chất tỷ lệ thức)
=> Số gạo bao thứ nhất là: a=25*2=50 (kg)
Số gạo bao thứ hai là: b=25*3=75 (kg)
Số gạo bao thứ tư là: c=25*4=100 (kg)
Cho mình hỏi tại sao lại có \(\dfrac{a}{2}\)= \(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) ạ ?