Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc lúc đi là xx(km/h), khi đó vận tốc lúc về là x+2x+2(km/h)
Thời gian đi là 3x3x(h) và thời gian về là 3x+23x+2(h)
Do bạn đã nghỉ 33 phút =120(h)=120(h) nên thời gian đi nhiều hơn thời gian về 3 phút nên ta có
3x=3x+2+1203x=3x+2+120
⇔60(x+2)=60x+x(x+2)⇔60(x+2)=60x+x(x+2)
⇔x2+2x−120=0⇔x2+2x−120=0
⇔(x−10)(x+12)=0⇔(x−10)(x+12)=0
Vậy x=10x=10 hoặc x=−12x=−12 (loại)
thời gian đi xe là :3/10+3/12=0,55(giờ)=33 phút
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Gọi vận tốc dự định của xe là x (km/h; x > 0)
Thời gian ô tô dự định đi là \(\dfrac{120}{x}\) (giờ)
Sau 2h đi, ô tô đi được: 2x (km)
Vận tốc lúc sau của ô tô là x + 10 (km/h)
Thời gian của ô tô đi trên quãng đường còn lại là \(\dfrac{120-2x}{x+10}\) (giờ)
Do người đó đến B đúng thời gian dự tính => ta có phương trình:
\(2+\dfrac{1}{2}+\dfrac{120-2x}{x+10}=\dfrac{120}{x}\)
<=> (x-30)(x+80) = 0
Mà x > 0
<=> x = 30 (tm)
Vận tốc của xe là 30km/h
Thời gian xe đi là \(\dfrac{120}{30}=4\left(giờ\right)\)
GỌI VẬN TỐC BAN ĐẦU LÀ V ,THỜI GIAN DỰ ĐỊNH LÀ T, THỜI GIAN ĐI QUANG ĐƯỜNG CON LẠI LÀ T' (ĐK V,T,T'>0)
S=V*T=V*2+(V+2)*T'
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot T'\)
TA LẠI CÓ :T'=T-2-0,5
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot\left(T-2-0,5\right)\)
\(\Rightarrow2T-5=0,5\cdot V\Rightarrow T=\frac{\left(0,5\cdot V+5\right)}{2}\)
MÀ V*T=50\(\Rightarrow V\cdot\frac{\left(0,5V+5\right)}{2}=50\Rightarrow V=10;-20\)
VÌ V>0 V=10...
Gọi vận tốc dự kiến của xe là : x km/h
gọi điểm xe bị hỏng là C:
Quãng đường từ A đến C là : 2x km
Quãng đường CB là : 90 -2x
Thời gian xe đi với vận tốc dự kiến từ A đến C là : \(\frac{90}{x}h\left(x\ne0\right)\)
Thời gian xe đi với vận tốc đã tăng tốc đi từ C đến B là : \(\frac{90-2x}{x+10}\)
Thự tế xe đến kịp so với thời gian dự kiến nên :
\(\frac{90}{x}=\frac{90-2x}{x+10}+2+\frac{1}{4}\Leftrightarrow90.4\left(x+1\right)=4x\left(90-2x\right)+9x\left(x+1\right)\)
\(\Leftrightarrow x^2+9x-90=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-15\left(L\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là : 6 km/h
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)