K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: - x2 - 1 = 0

           -x2      = 1

           -1        = x2

             x2        =  -1

vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm

K CHO MIK NHA

6 tháng 5 2018

Đặt \(f\left(x\right)=-x^2-1=-\left(x^2+1\right)\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2+1>0\)với mọi giá trị của x

=> \(-\left(x^2+1\right)< 0\)với mọi giá trị của x

Vậy \(f\left(x\right)=-x^2-1\)vô nghiệm (đpcm)

Cách bạn làm ở trên đúng.

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

`6x^2+9=0`

Vì \(x^2\ge0\text{ }\forall\text{ x}\)

`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)

`\rightarrow` Đa thức vô nghiệm.

Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:

\(6x^2+9=0\)

\(\rightarrow\text{ }6x^2=0-9\)

\(\rightarrow\text{ }6x^2=-9\)

Mà \(x^2\ge0\text{ }\forall\text{ x}\)

\(\rightarrow\text{ Đa thức vô nghiệm.}\)

(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).

17 tháng 5 2023

Dùng phương pháp phản chứng em nhé:

Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:

6\(x^2\) + 9 = 0

Mặt khác ta có:  \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)

vậy 6\(x^2\) + 9 = 0 (là sai) hay 

Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)

4 tháng 5 2017

Vì x^4 luôn lớn hơn hoặc bằng 0

3 > 0

x^2 luôn lớn hơn hoặc bằng 0

Suy ra đa thức p(x) ko có nghiệm

5 tháng 5 2017

thank kiu

3 tháng 4 2018

ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)hoặc \(x+5=0\)

  • \(x-1=0\Rightarrow x=1\)
  • \(x+5=0\Rightarrow x=-5\)

\(\)vậy \(x\in(1;-5)\)

đúng thì k nha

3 tháng 4 2018

B=X^2-X+5X-5 =  X(X-1)+5(X-1)=(X-1)(X-5)=0

8 tháng 5 2018

Ta có : \(4x^2-4x+2015\)

\(=4x^2-2x-2x+1+2014=\left(4x^2-2x\right)-\left(2x-1\right)+2014\)

\(=2x\left(2x-1\right)-\left(2x-1\right)+2014\)

\(=\left(2x-1\right)\left(2x-1\right)+2014=\left(2x-1\right)^2+2014\)

Vì \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+2014>0\forall x\)

=> Đa thức 4x2 - 4x +2015 vô nhiệm (đpcm)

20 tháng 5 2018

\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)

\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm