Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: - x2 - 1 = 0
-x2 = 1
-1 = x2
x2 = -1
vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm
K CHO MIK NHA
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
`6x^2+9=0`
Vì \(x^2\ge0\text{ }\forall\text{ x}\)
`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)
`\rightarrow` Đa thức vô nghiệm.
Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:
\(6x^2+9=0\)
\(\rightarrow\text{ }6x^2=0-9\)
\(\rightarrow\text{ }6x^2=-9\)
Mà \(x^2\ge0\text{ }\forall\text{ x}\)
\(\rightarrow\text{ Đa thức vô nghiệm.}\)
(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).
Dùng phương pháp phản chứng em nhé:
Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:
6\(x^2\) + 9 = 0
Mặt khác ta có: \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)
vậy 6\(x^2\) + 9 = 0 (là sai) hay
Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)
Vì x^4 luôn lớn hơn hoặc bằng 0
3 > 0
x^2 luôn lớn hơn hoặc bằng 0
Suy ra đa thức p(x) ko có nghiệm
ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)hoặc \(x+5=0\)
- \(x-1=0\Rightarrow x=1\)
- \(x+5=0\Rightarrow x=-5\)
\(\)vậy \(x\in(1;-5)\)
đúng thì k nha
Ta có : \(4x^2-4x+2015\)
\(=4x^2-2x-2x+1+2014=\left(4x^2-2x\right)-\left(2x-1\right)+2014\)
\(=2x\left(2x-1\right)-\left(2x-1\right)+2014\)
\(=\left(2x-1\right)\left(2x-1\right)+2014=\left(2x-1\right)^2+2014\)
Vì \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+2014>0\forall x\)
=> Đa thức 4x2 - 4x +2015 vô nhiệm (đpcm)
\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)
\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm
Đúng đó. Nhưng ghi thêm: vậy đa thức trên vô nghiệm nha.
Ghi 3 > 0 hơi trẻ trâu tí !!!
Nhưng vẫn đúng
Thiếu kết luận