K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

Để a là phân số tối giản thì ƯCLN(3n-1;n-2)=1

Gọi ƯCLN(3n-1;n-2)=d => 3n-1 chia hết cho d;n-2 chia hết cho d

=>3n-1-(n-2) chia hết cho d

=>3n-1-3(n-2) chia hết cho d

=>3n-1-3n-6 chia hết cho d

=>-5 chia hết cho d

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

15 tháng 3 2020

Mọi người ghi cả cách giải nhé

6 tháng 2 2019

B)

Vì (7n+6)/(6n+7) chưa tối giản

=>7n+6 và 6n+7 cùng chia hết cho d (d E N,d # 1)

=>(7n+6)-(6n+7) chia hết cho d

=>n-1 chia hết cho d

Mà 6n+7 chia hết cho d

=>(6n+7)-6(n-1) chia hết cho d

=>13 chia hết cho d

=>d E Ư(13)={1;13}

Mà d#1

=>d=13

=>n-1=13k (k E N)

=>n=13k+1

Vậy với n=13k+1 thì (7n+6)/(6n+7) chưa tối giản

6 tháng 2 2019

a) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

=> \(\frac{5}{x}=\frac{1+2y}{6}\)

=> 5.6 = x(1 + 2y)

=> x(1 + 2y) = 30 = 1 . 30 = 30 . 1 = 2 . 15 = 15 . 2 = 5 . 6 = 6. 5 = 3 . 10 = 10 .3

Vì 1 + 2y là số lẽ nên 1  + 2y \(\in\){1; 15; 3; 5}

Lập bảng : 

x 30 2 10 6
1 + 2y 1 15 3 5
 y 0 7 1 2

Vì x và y là số nguyên tố nên ....

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:

a. Để phân số đã cho có giá trị nguyên thì:

$n+9\vdots n-6$

$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$

Mà $n>6$ nên $n-6>0$

$\Rightarrow n-6\in\left\{1;3;5;15\right\}$

$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$

b.

Gọi $d=ƯCLN(n+9, n-6)$

$\Rightarrow n+9\vdots d; n-6\vdots d$

$\Rightarrow (n+9)-(n-6)\vdots d$

$\Rightarrow 15\vdots d$

Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$

Điều này xảy ra khi: 

$n-6\not\vdots 3; n-6\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 5 2019

dễ quá mà

12 tháng 5 2019

bn gà thế

1 tháng 5 2021

a) n+9n−6=n−6+15n−6=1+15n−6n+9n−6=n−6+15n−6=1+15n−6

Để phân số có giá trị là số tự nhiên điều kiện là: 

n−6∈Ư(15)={1;3;5;15}n−6∈Ư(15)={1;3;5;15}vì n > 6 

=> n∈{7;9;11;21}n∈{7;9;11;21} thỏa mãn

b) Đặt:  (n+9;n−6)=d(n+9;n−6)=d với d là số tự nhiên 

=> \hept{n+9⋮dn−6⋮d⇒15⋮d\hept{n+9⋮dn−6⋮d⇒15⋮d=> d∈Ư(15)={1;3;5;15}d∈Ư(15)={1;3;5;15}

Với d = 3 => \hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3\hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3=> Tồn tại  số tự nhiên k để n = 3k ( k>2)

Với d = 5 => \hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5\hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5=> Tồn tại stn h để: n + 4 = 5 h <=> n = 5h - 4 ( h > 2)

Do đó để phân số trên là tốn giản 

<=> d = 1 =>  n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2

Vậy  n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2