K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

\(A=-x^2-4x\)

\(\Rightarrow A=-x^2-4x-4+4\)

\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)

\(\Rightarrow A=-\left(x+2\right)^2+4\)

mà \(-\left(x+2\right)^2\le0,\forall x\)

\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)

Vậy GTLN của A là 4

\(B=-9x^2+24x-18\)

\(\Rightarrow B=-9x^2+24x-16+16-18\)

\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\)

mà \(-\left(3x-4\right)^2\le0,\forall x\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)

Vậy GTLN của B là -2

28 tháng 7 2023

loading...  

28 tháng 7 2023

Yêu cầu đề bài của bạn

 

28 tháng 7 2023

A = - \(x^2\) - 4\(x\)

A = -(\(x^2\) + 4\(x\) + 4) + 4

A = -(\(x\) + 2)2 + 4 

Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4  ≤ 4

⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2

Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2

B = - 9\(x^2\) + 24\(x\) - 18

B = - (9\(x^2\) - 24\(x\) + 16) - 2

B = -(3\(x\) - 4)2 - 2 

(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2 

Bmax = -2 ⇔ 3\(x\)   - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\) 

Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\) 

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

7 tháng 8 2018

\(1;a,A=x^2+20x+101\)

\(A=x^2+2.10x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -10

Vậy Min A = 1 <=> x = -10

28 tháng 7 2023

A = 2\(x\) - \(x^2\) - 4

A = -(\(x^2\) - 2\(x\) + 1)  - 3

A = - (\(x-1\))2 - 3

Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0  ⇒ -( \(x\) - 1)2 - 3 ≤ - 3

Amax = -3  ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1

Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1

 

28 tháng 7 2023

B = - \(x^2\) - 4\(x\) 

B = -( \(x^2\) + 4\(x\) + 4) + 4

B = -(\(x\) + 2)2 + 4

Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2  + 4  ≤ 0 

Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)

Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2

 

 

17 tháng 10 2016

A= x^2-6x-9-4=(x-3)^2-4> hoặc bằng 0-4=-4

Dấu bằng xảy ra khi: (x-3)^2 = 0 => x-3=0 => x= 3

Vậy GTNN của A = -4 tại x = 3

17 tháng 10 2016

Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:

a) 4x^2+4x+11

b) 3x^2-6x+1

c) x^2-2x+y^2-4y+6

Sẵn tiện chắc bạn cùng tuổi với mình, mình đang bí bài gần giống. Giúp nhau nhen

13 tháng 6 2016

\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)

\(=-\left(3x-4\right)^2-2\le-2\)

Các câu sau tương tự.

26 tháng 6 2018

x^2-6x+10

=(x^2-2.3.x+3^2)+1

=(x-3)^2+1

Có(x-3)^2\(\ge\)0

\(\Rightarrow\)(x-3)^2+1\(\ge\)1.Dấu "=" xảy ra\(\Leftrightarrow\)(x-3)^2=0

                                                        \(\Leftrightarrow\)x-3=0

                                                        \(\Leftrightarrow\)x=3

Vậy A min=1\(\Leftrightarrow\)x=3

Hok tốt ^_<

4 tháng 8 2017

a) => M = -(X2+8X-5) 
   <=> M=-( X2+2xXx4+42-42-5)
   <=> M=-[(X+4)2-21]
=> M=21-(x+4)2 =< 21
vậy MAX M= 21 khi X+4 =0 => x=-4
các bài còn lại tương tự ~~~

4 tháng 8 2017

a, \(M=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+2.x.4+16-21\right)\)

\(=-\left(x+4\right)^2+21\)

\(\Rightarrow M\le21\)

Dấu ''='' xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy giá trị lớn nhất của M là 21 khi x = -4

b, \(N=-3x\left(x+3\right)-7\)

\(=-3x^2-9x-7\)

\(=-3\left(x^2+3x+\frac{7}{3}\right)\)

\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)

\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow N\le\frac{-1}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy giá trị lớn nhất của N là \(\frac{-1}{4}\Leftrightarrow x=\frac{-3}{2}\)

c,\(P=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-2.x.2+4-7\right)\)

\(=-\left(x-2\right)^2+7\)

\(\Rightarrow P\le7\)

Dấu ''='' xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy giá trị lớn nhất của P là 7 khi x = 2

d, \(E=9x-3x^2\)

\(=-3\left(x^2-3x\right)\)

\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

\(\Rightarrow E\le\frac{27}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy giá trị lớn nhất của E là \(\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)